3Д принтер фото – Литофания или как сделать фото на 3D принтере

Содержание

Быть в 3d или не быть? Как я сам себя отсканировал и распечатал на 3d-принтере / Habr

«С незапамятных времен люди стремились уменьшить то, чем пользуются» Эрлих Бахман, «Кремниевая долина», эпизод 7

Сейчас на стыке технологий 3d-сканирования и 3d-печати появилась услуга (вреде началось все в Японии в 2012) по изготовлению 3d-фигурок.

В кинематографе 3d-принтеры промелькнули в сериалах «Элементарно» (там злодей распечатал либератор, но на хабре напечатали нарисовали в фотошопе либератор раньше, чем в кино) и в «Теории большого взрыва»(свисток сделали многие, а вот про фигурки еще никто не писал).

Вдогонку к посту о том, что стоит развивать различные 3d-сервисы в России, хочу поделиться тем как происходит процесс создания 3d фигурки от и до.

Итак, я зашел в гости к ребятам на цветном бульваре и покорение 3-го измерения началось.

Сканер

Сканирование происходит при помощи 3d-сканера Artec Eva.
Сканер состоит из фотокамер и подсветки, а 3d-изображение «генерируется из фотографий»
СпецификацииВозможность считывания текстуры — есть

3D разрешение — 0,5 мм

3D степень точности — 0,1 мм

3D степень точности на расстоянии, до — 0,15% на 100 мм

Текстурное разрешение — 1,3 Мп

Цвет — 24 бит

Параллельная обработка — да

Производительность — 40 000 000 полигонов на 1GB RAM

Выходной формат OBJ, STL, WRML, ASCII, AOP, CSV, PTX

Калибровка менее 1 мин, не требует спецоборудования

Скорость сбора данных, до 288 000 точек/сек

Время экспонирования — 0,0002 сек

Частота видео съемки, до 16 кадров/сек

Рабочее расстояние 0,4 – 1 м

Источник света — лампа вспышка (не лазер)

Прочее:

Размеры, ВxДxШ — 261,5 x 158,2 x 63,7 мм

Вес — 0,85 кг

Энергопотребление — 12В, 48Вт

Минимальные системные требования

IntelCore 2 duo, 2Gb RAM, NVIDIA Quadro/GeForce 9000

ВНИМАНИЕ! заглянуть под спойлер стоит душевного здоровья:

Цена

Сканирование

Сканирование занимает примерно 10 минут.
Оно обычно происходит на поворотной платформе, но возможен вариант, что оператор бегает вокруг вас.
Сканирование выглядит примерно как куча вспышек от фотоаппарата (см. видео в конце обзора)

Редактирование занимает максимум час, если требовательный пользователь просит «уменьшить живот» или «убрать складки» в различных местах.

Программа редактирования входит в комплект сканера.

Что примечательно, обработка текстур возможна с космическим разрешением:



Оперативки требуется немало.

Принтер

Мое первое впечатление, принтер — это смесь гигантсткого струйника, хлебопечки и пылесоса.

Принтер весит 340 кг, и живет своей жизнью, порой он самостоятельно включается и проводит чистку.

Принтер требует постоянного включения в сеть.

Толщина слоя — 89-102 мкм

Скорость печати 2-4 слоя в минуту

Для масштаба — живая девушка:

Расходник — гипс, из которого печатают модель:

Печатающая головка («башка»):

Картридж с чернилами:

Подача чернил к печатающей головке:

ВНИМАНИЕ! Заглянуть под спойлер стоит душевного здоровья:

Цена
Немного видео

Печать

Программа управления и предпросмотра

Предпросмотр в нескольких проекциях.



Расчетное время печати и отображение текущего слоя печати.

Сначала на основание наносится тонкий слой гипсового порошка. После этого печатающая головка наносит специальную смолу, склеивающую гипс в нужных местах, и обычные чернила. Затем наносится следующий слой гипса и т.д.

После окончания печати излишки гипса удаляются специальным пылесосом, а из труднодоступных мест сжатым воздухом.

237(из 525) слой печати как отображает программа:

237 слой в реальности:

После того как принтер полностью напечатал модель — необходимо некоторое время для просушки.

Прошло 1,5 часа, сейчас будем «вытаскивать из печки»:

Удаляем излишки гипса методом «всасывания»:



Гипс повторно очищается\фильтруется и идет в дело.

Теперь удаляем излишки методом «обдува»:



Снизу есть 2 отверстия — из них тоже выдуваем гипс — фигурка полая внутри

Покрывают меня цианоакрилатом («закрепитель»):

Полчаса подсохнуть — и в зал славы:

Примеры работ


Запечатлеть памятный момент, памятную форму.



Можно поэкспериментировать с оформлением.



На мой взгляд, самая оригинальная фигурка.



Качество позволяет напечатать даже мелкие узоры одежды.

Вывод

Еще играя в Quake2, мне хотелось сделать скин со своим лицом.

Уже не за горами тот этап, когда наряду с фотоальбомами будут и 3d-альбомы.

Пока что фигурки вызывают вау-эффект, чем можно воспользоваться и сделать прикольный подарок.

P.S.

habr.com

Литофания на 3D-принтере – новое измерение для цифровой фотографии

22.12.2015

Джастин Йенсен (Justin Jensen), магистр компьютерных наук университета Бригама Янга (Brigham Young University), уже многие годы изучает компьютерную графику и анимацию. Он искал себя в попытках создать нечто осязаемое и значащее – 3D-объект, который можно держать в руках, рассматривать со всех сторон… Так он нашел свой путь к 3D-печати. Вдохновившись технологией 3D-принтинга и карточками с изображением героев из 2-го эпизода «Звездных войн», он нашел способ творить напечатанные на 3D-принтере версии цифровых фотографий, которые с помощью подсветки воссоздают оригинальное изображение с высоким уровнем точности и  известны как литофании, напечатанные на 3D-принтере.


Литофания – вид искусства, существующий уже много веков. Литофания – это фарфоровая пластинка с изображением, которое, если смотреть сквозь него на свет, кажется одноцветной картинкой, правильное сочетание светлых и темных тонов становится возможным благодаря нанесению фарфора разной толщины: чем тоньше слой, тем светлее подсвечиваемая область. И наоборот. В результате получается трехмерное изображение, которое может демонстрировать поразительную глубину.





Несмотря на то, что литофании берут свое начало в 19 веке, не они вдохновили Йенсена, точнее, не совсем они.


«Когда я был ребенком, а 2-й эпизод «Звездных войн» только выходил в прокат, в упаковках с чипсами Doritos можно было найти вкладыши, — рассказывает он. – Если поднести их к свету, то появляется изображение героя киносаги. Именно это вдохновило меня. Я хотел сделать нечто подобное».


Для создания литофании на 3D-принтере Йенсен сначала превратил цветное изображение в черно-белое, изменив его яркость. Потом он создал прямоугольную сетку заполненную треугольниками, где каждый пиксель был представлен верхушкой треугольной сетки. Для обозначения областей, которые во время 3D-печати будут тоньше или толще и станут пропускать разное количество света, он провел координаты Z для каждой вершины, обратно пропорциональные яркости пикселя. Более яркие пиксели получили более короткую величину Z, что соответствует более тонкому слою печати и, как следствие, большему объему света, проникающего через него.






После экспорта STL-файла Йенсен использовал 3D-принтер Stratasys Objet30 Pro и материал VeroGray для создания литофании. «Нужна большая точность, которую может обеспечить SLA 3D-принтер, чтобы изображение получилось достоверным и соответствовало оригиналу, — рассказывает он. – У нас в лаборатории есть FDM-принтер, но мы уже экспериментировали с тем, как продукция из него передает свет, и тесты не показали ожидаемых результатов. Поэтому я отказался его использовать». Однако Джастин добавил: если использовать исходный файл с более простой яркостью и изображением и более крупными деталями, 3D-принтер FDM вполне может справиться.



Фотографии, выбранные Йенсеном, были природной тематики и включали пейзажи пустыни, цветочного луга и изображение воздушного шара изнутри. После переноса изображений на литофанию картинки сохранили необычайную точность и реалистичность, если поднести их к свету.


 


Уже есть онлайн-уроки по созданию литофаний с применением 3D-принтера, и, поскольку результаты работы очень реалистичны, можно выбрать любые фотографии, включая семейные. В свою очередь Йенсен считает, что в технологии существует несколько интересных аспектов, которые он хотел бы изучить в будущем.


«Литофании выглядят просто потрясающе, если подсвечивать их в темноте, а это не очень удобно. Я хочу поэкспериментировать с разными материалами и цветами для уменьшения этого неудобства, — делится планами Джастин. – Еще одна идея – не варьировать толщину изображения с двух сторон в целом, а конкретно нацеливаться на каждый пиксель. Это позволит сделать изображение полностью невидимым без подсветки».


Как видим, «Звездные войны» – действительно вездесущая сила.


 


По материалам: 3ders.org

Переведено: smileexpo.ru

3d-expo.ru

Что такое 3D печать и как работает 3D принтер?

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый 3D принтер, способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё — от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце — это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей — высокая скорость, простота и относительно небольшая стоимость.

Например, для создания 3D модели или какой-либо детали вручную может понадобиться довольно много времени — от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы — чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге — ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера используется полупрозрачный материал, который деформируется под действием атмосферной влаги.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол (элеватор) находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS — единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области печати металлом. В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала — из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

 

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой — скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь — уже не плод воображения писателей — фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

make-3d.ru

3D-печать для чайников | Энциклопедия 3D-печати

Термин 3D-печать

Термин 3D-печать имеет несколько синонимов, один из которых достаточно кратко и точно характеризует сущность процесса – «аддитивное производство», то есть производство за счет добавления материала. Термин был придуман не случайно, ибо в этом и состоит основное отличие множественных технологий 3D-печати от привычных методов промышленного производства, получивших в свою очередь название «субтрактивных технологий», то есть «отнимающих». Если при фрезеровке, шлифовке, резке и прочих схожих процедурах лишний материал удаляется с заготовки, то в случае с аддитивным производством материал постепенно добавляется до получения цельной модели.

В скором времени 3D-печать будет опробована даже на Международной космической станции

Строго говоря, многие традиционные методы можно было бы отнести к «аддитивным» в широком смысле этого слова – например, литье или клепку. Однако стоит иметь в виду, что в этих случаях либо требуется расход материалов на изготовление специфических инструментов, занятых в производстве конкретных деталей (как в случае с литьем), либо весь процесс сводится к соединению уже готовых деталей (сварке, клепке и пр.). Для того чтобы технология классифицировалась как «3D-печать», необходимо построение конечного продукта из сырья, а не заготовок, а формирование объектов должно быть произвольным – то есть без использования форм. Последнее означает, что аддитивное производство требует программной составляющей. Грубо говоря, аддитивное производство требует управления с помощью компьютеров, чтобы форму конечных изделий можно было определять за счет построения цифровых моделей. Именно этот фактор и задержал широкое распространение 3D-печати до того момента, когда числовое программное управление и 3D-проектирование стали общедоступными и высокопроизводительными.

Методы 3D-печати

Технологий 3D-печати существует великое множество, названий же для них еще больше ввиду патентных ограничений. Тем не менее, можно попробовать разделить технологии по основным направлениям:

Экструзионная печать

Сюда входят такие методы, как послойное наплавление (FDM) и многоструйная печать (MJM). В основе этого метода лежит выдавливание (экструзия) расходного материала с последовательным формированием готового изделия. Как правило, расходные материалы состоят из термопластиков, либо композитных материалов на их основе.

Плавка, спекание или склеивание

Этот подход основывается на соединении порошкового материала в единое целое. Формирование производится разными способами. Наиболее простым является склеивание, как в случае со струйной трехмерной печатью (3DP). Подобные принтеры наносят на рабочую платформу тонкие слои порошка, которые затем выборочно склеиваются связующим материалом. Порошки могут состоять из практически любого материала, который можно измельчить до состояния пудры – пластика, древесины, металла.

Эта модель автомобиля Aston Martin, принадлежавшего Джеймсу Бонду, была успешно напечатана на SLS-принтере компании Voxeljet и не менее успешно взорвана во время съемок фильма «Координаты Скайфолл» вместо дорогого оригинала

Наиболее популярными же в данной категории стали технологии лазерного спекания (SLS и DMLS) и плавки (SLM), позволяющие создавать цельнометаллические детали. Как и в случае со струйной трехмерной печатью, эти устройства наносят тонкие слои порошка, но материал не склеивается, а спекается или плавится с помощью лазера. Лазерное спекание (SLS) применяется для работы как с пластиковыми, так и с металлическими порошками, хотя металлические гранулы обычно имеют более легкоплавкую оболочку, а после печати дополнительно спекаются в специальных печах. DMLS – вариант SLS установок с более мощными лазерами, позволяющими спекать непосредственно металлические порошки без добавок. SLM-принтеры предусматривают уже не просто спекание частиц, а их полную плавку, что позволяет создавать монолитные модели, не страдающие от относительной хрупкости, вызываемой пористостью структуры. Как правило, принтеры для работы с металлическими порошками оснащаются вакуумными рабочими камерами, либо замещают воздух инертными газами. Подобное усложнение конструкции вызывается необходимостью работы с металлами и сплавами, подверженными оксидации – например, с титаном.

Стереолитография

Схема работы SLA-принтера

Стереолитографические принтеры используют специальные жидкие материалы, называемые «фотополимерными смолами». Термин «фотополимеризация» указывает на способность материала затвердевать под воздействием света. Как правило, такие материалы реагируют на облучение ультрафиолетом.

Смола заливается в специальный контейнер с подвижной платформой, которая устанавливается в позиции возле поверхности жидкости. Слой смолы, покрывающий платформу, соответствует одному слою цифровой модели. Затем тонкий слой смолы обрабатывается лазерным лучом, затвердевая в точках соприкосновения. По окончании засветки платформа вместе с готовым слоем погружаются на толщину следующего слоя, и засветка производится вновь.

Ламинирование

Схема работы 3D-принтеров, использующих технологию ламинирования (LOM)

Некоторые 3D-принтеры выстраивают модели, используя листовые материалы – бумагу, фольгу, пластиковую пленку.

Слои материала наклеиваются друг на друга и обрезаются по контурам цифровой модели с помощью лазера или лезвия.

Такие установки хорошо подходят для макетирования и могут использовать очень дешевые расходные материалы, включая обычную офисную бумагу. Тем не менее, сложность и шумность таких принтеров, вкупе с ограниченными возможностями изготовляемых моделей ограничивают их популярность.

Наиболее популярными методами 3D-печати, применяемыми в быту и в офисных условиях стали моделирование методом послойного наплавления (FDM) и лазерная стереолитография (SLA).

Остановимся на этих технологиях поподробнее.

Печать методом послойного наплавления (FDM)

FDM – пожалуй, наиболее простой и доступный метод трехмерного построения, что и обуславливает его высокую популярность.
Высокий спрос на FDM-принтеры ведет к быстрому снижению цен на устройства и расходные материалы, наряду с развитием технологии в направлении удобства эксплуатации и повышения надежности.

Расходные материалы

Катушка с нитью из ABS-пластика и готовая модель

FDM-принтеры предназначены для печати термопластиками, которые обычно поставляются в виде тонких нитей, намотанных на катушки. Ассортимент «чистых» пластиков весьма широк. Одним из наиболее популярных материалов является полилактид или «PLA-пластик». Этот материал изготавливается из кукурузы или сахарного тростника, что обуславливает его нетоксичность и экологичность, но делает его относительно недолговечным. ABS-пластик, наоборот, очень долговечен и износоустойчив, хотя и восприимчив к прямому солнечному свету и может выделять небольшие объемы вредных испарений при нагревании. Из этого материала производятся многие пластиковые предметы, которыми мы пользуемся на повседневной основе: корпуса бытовых устройств, сантехника, пластиковые карты, игрушки и т.д.

Кроме PLA и ABS возможна печать нейлоном, поликарбонатом, полиэтиленом и многими другими термопластиками, широко распространенными в современной промышленности. Возможно и применение более экзотичных материалов – таких, как поливиниловый спирт, известный как «PVA-пластик». Этот материал растворяется в воде, что делает его весьма полезным при печати моделей сложной геометрической формы. Но об этом чуть ниже.

Модель, изготовленная из Laywoo-D3. Изменение температуры экструзии позволяет добиваться разных оттенков и имитировать годовые кольца

Вовсе необязательно печатать однородными пластиками. Возможно и применение композитных материалов, имитирующих древесину, металлы, камень. Такие материалы используют все те же термопластики, но с примесями непластичных материалов.

Так, Laywoo-D3 состоит отчасти из натуральной древесной пыли, что позволяет печатать «деревянные» изделия, включая мебель.

Материал под названием BronzeFill имеет наполнитель из настоящей бронзы, а изготовленные из него модели поддаются шлифовке и полировке, достигая высокой схожести с изделиями из чистой бронзы.

Стоит лишь помнить, что связующим элементом в композитных материалах служат термопластики – именно они и определяют пороги прочности, термоустойчивости и другие физические и химические свойства готовых моделей.

Экструдер

Экструдер – печатная головка FDM-принтера. Строго говоря, это не совсем верно, ибо головка состоит из нескольких частей, из которых непосредственно «экструдером» является лишь подающий механизм. Тем не менее, по устоявшейся традиции термин «экструдер» повсеместно применяется в качестве синонима целой печатающей сборки.

Общая схема конструкции FDM-экструдера

Экструдер предназначен для плавки и нанесения термопластиковой нити. Первый компонент – механизм подачи нити, состоящий из валиков и шестерней, приводимых в движение электромотором. Механизм осуществляет подачу нити в специальную нагреваемую металлическую трубку с соплом небольшого диаметра, называемую «хот-энд» или просто «сопло». Тот же механизм используется и для извлечения нити, если необходима смена материала.

Хот-энд служит для нагревания и плавления нити, подаваемой протягивающим механизмом. Как правило, сопла производятся из латуни или алюминия, хотя возможно использование более термоустойчивых, но и более дорогих материалов. Для печати наиболее популярными пластиками вполне достаточно и латунного сопла. Собственно «сопло» крепится к концу трубки с помощью резьбового соединения и может быть заменено на новое в случае износа или при необходимости смены диаметра. Диаметр сопла обуславливает толщину расплавленной нити и, как следствие, влияет на разрешение печати. Нагревание хот-энда регулируется термистором. Регулировка температуры очень важна, так при перегреве материала может произойти пиролиз, то есть разложение пластика, что способствует как потере свойств самого материала, так и забиванию сопла.

Экструдер FDM-принтера PrintBox3D One

Для того чтобы нить не расплавилась слишком рано, верхняя часть хот-энда охлаждается с помощью радиаторов и вентиляторов. Этот момент имеет огромное значение, так как термопластики, проходящие порог температуры стеклования, значительно расширяются в объеме и повышают трение материала со стенками хот-энда. Если длина такого участка слишком велика, протягивающему механизму может не хватить сил для проталкивания нити.

Количество экструдеров может варьироваться в зависимости от предназначения 3D-принтера. Простейшие варианты используют одну печатающую головку. Двойной экструдер значительно расширяет возможности устройства, позволяя печатать одну модель двумя разными цветами, а также использовать разные материалы. Последний момент важен при построении сложных моделей с нависающими элементами конструкции: FDM-принтеры не могут печатать «по воздуху», так как наносимым слоям требуется опора. В случае с навесными элементами приходится печатать временные опорные структуры, которые удаляются по завершении печати. Процесс удаления чреват повреждением самой модели и требует аккуратности. Кроме того, если модель имеет сложную структуру с труднодоступными внутренними полостями, построение обычных опор может оказаться непрактичным виду сложности удаления лишнего материала.

Готовая модель с опорами из PVA-пластика (белого цвета) до и после промывки

В таких случаях весьма кстати приходится тот самый водорастворимый поливиниловый спирт (PVA-пластик). С помощью двойного экструдера можно построить модель из водоупорного термопластика, используя PVA для создания опор.

После окончания печати PVA можно просто растворить в воде и получить сложное изделие идеального качества.

Некоторые модели FDM-принтеров могут использовать три или даже четыре экструдера.

Рабочая платформа

Подогреваемая платформа, накрытая съемным стеклянным рабочим столиком

Построение моделей происходит на специальной платформе, зачастую оснащаемой нагревательными элементами. Подогрев требуется для работы с целым рядом пластиков, включая популярный ABS, подверженных высокой степени усадки при охлаждении. Быстрая потеря объема холодными слоями в сравнении со свеженанесенным материалом может привести к деформации модели или расслоению. Подогрев платформы позволяет значительно выравнивать градиент температур между верхними и нижними слоями.

Для некоторых материалов подогрев противопоказан. Характерный пример – PLA-пластик, который требует достаточно длительного времени для затвердевания. Подогрев PLA может привести к деформации нижних слоев под тяжестью верхних. При работе с PLA обычно принимаются меры не для подогрева, а для охлаждения модели. Такие принтеры имеют характерные открытые корпуса и дополнительные вентиляторы, обдувающие свежие слои модели.

Калибровочный винт рабочей платформы, покрытой синим малярным скотчем

Платформа требует калибровки перед печатью, чтобы сопло не задевало нанесенные слои и не отходило слишком далеко, вызывая печать «по воздуху», что приводит к образованию «вермишели» из пластика. Процесс калибровки может быть как ручным, так и автоматическим. В ручном режиме калибровка производится позиционированием сопла в разных точках платформы и регулировкой наклона платформы с помощью опорных винтов для достижения оптимальной дистанции между поверхностью и соплом.

Как правило, платформы оснащаются дополнительным элементом – съемным столиком. Такая конструкция упрощает чистку рабочей поверхности и облегчает снятие готовой модели. Столики производятся из различных материалов, включая алюминий, акрил, стекло и пр. Выбор материала для изготовления столика зависит от наличия подогрева и расходных материалов, под которые оптимизирован принтер.

Для лучшего схватывания первого слоя модели с поверхностью столика зачастую применяются дополнительные средства, включая полиимидную пленку, клей и даже лак для волос! Но наиболее популярным средством служит недорогой, но эффективный малярный скотч. Некоторые производители делают перфорированные столики, хорошо удерживающие модель, но сложные в очистке. В целом, целесообразность нанесения дополнительных средств на столик зависит от расходного материала и материала самого столика.

Механизмы позиционирования

Схема работы позиционирующих механизмов

Само собой, печатающая головка должна перемещаться относительно рабочей платформы, причем в отличие от обычных офисных принтеров, позиционирование должно производиться не в двух, а в трех плоскостях, включая регулировку по высоте.

Схема позиционирования может варьироваться. Самый простой и распространенный вариант подразумевает крепление печатающей головки на перпендикулярных направляющих, приводимых в движение пошаговыми двигателями и обеспечивающими позиционирование по осям X и Y.

Вертикальное же позиционирование осуществляется за счет передвижения рабочей платформы.

С другой стороны, возможно передвижение экструдера в одной плоскости, а платформы – в двух.

Дельта-принтер ORION производства компании SeemeCNC

Один из вариантов, набирающих популярность, является использование дельтаобразной системы координат.

Подобные устройства в промышленности называют «дельта-роботами».

В дельта-принтерах печатная головка подвешивается на трех манипуляторах, каждый из которых передвигается по вертикальной направляющей.

Синхронное симметричное движение манипуляторов позволяет изменять высоту экструдера над платформой, а ассиметричное движение вызывает смещение головки в горизонтальной плоскости.

Вариантом такой системы является обратный дельтовидный дизайн, где экструдер крепится неподвижно к потолку рабочей камеры, а платформа передвигается на трех опорных манипуляторах.

Дельта-принтеры имеют цилиндрическую область построения, а их конструкция облегчает увеличение высоты рабочей зоны с минимальными изменениями дизайна за счет удлинения направляющих.

В итоге все зависит от решения конструкторов, но основополагающий принцип не меняется.

Управление

Типичный контроллер на основе Arduino, оснащенный дополнительными модулями

Управление работой FDM-принтера, включая регулировку температуры сопла и платформы, темпа подачи нити и работы пошаговых моторов, обеспечивающих позиционирование экструдера, выполняется достаточно простыми электронными контроллерами. Большинство контроллеров основываются на платформе Arduino, имеющей открытую архитектуру.

Программный язык, используемый принтерами, называется G-код (G-Code) и состоит из перечня команд, поочередно выполняемых системами 3D-принтера. G-код компилируется программами, называемыми «слайсерами» – стандартным программным обеспечением 3D-принтеров, сочетающим некоторые функции графических редакторов с возможностью установки параметров печати через графический интерфейс. Выбор слайсера зависит от модели принтера. Принтеры RepRap используют слайсеры с открытым исходным кодом – такие, как Skeinforge, Replicator G и Repetier-Host. Некоторые компании создают принтеры, требующие использование фирменного программного обеспечения.

Программный код для печати генерируется с помощью слайсеров

В качестве примера можно упомянуть принтеры линейки Cube от компании 3D Systems. Есть и такие компании, которые предлагают фирменное обеспечение, но позволяют использовать и сторонние программы, как в случае с последними поколениями 3D-принтеров компании MakerBot.

Слайсеры не предназначены для 3D-проектирования, как такового. Эта задача выполняется с помощью CAD-редакторов и требует определенных навыков трехмерного дизайна. Хотя новичкам не стоит отчаиваться: цифровые модели самых различных дизайнов предлагаются на многих сайтах, зачастую даже бесплатно. Наконец, некоторые компании и частные специалисты предлагают услуги 3D-проектирования для печати на заказ.

И наконец, 3D-принтеры можно использовать вкупе с 3D-сканерами, автоматизирующими процесс оцифровки объектов. Многие их таких устройств создаются специально для работы с 3D-принтерами. Наиболее известные примеры включают ручной сканер 3D Systems Sense и портативный настольный сканер MakerBot Digitizer.

FDM-принтер MakerBot Replicator 5-го поколения, со встроенным контрольным модулем в верхней части рамы

Пользовательский интерфейс 3D-принтера может состоять из банального USB порта для подключения к персональному компьютеру. В таких случаях управление устройством фактически осуществляется посредством слайсера.

Недостатком такой упрощенности является достаточно высокая вероятность сбоя печати при зависаниях или притормаживании компьютера.

Более продвинутый вариант включает наличие внутренней памяти или интерфейса для карты памяти, что позволяет сделать процесс автономным.

Такие модели оснащаются контрольными модулями, позволяющими регулировать многие параметры печати (например, скорость печати или температуру экструзии). В состав модуля может входить небольшой LCD-дисплей или даже мини-планшет.

Разновидности FDM-принтеров

Профессиональный FDM-принтер Stratasys Fortus 360mc, позволяющий печатать нейлоном

FDM-принтеры весьма и весьма разнообразны, начиная от простейших самодельных RepRap принтеров и заканчивая промышленными установками, способными печатать крупногабаритные объекты.

Лидером по производству промышленных установок является компания Stratasys, основанная автором технологии FDM-печати Скоттом Крампом.

Простейшие FDM-принтеры можно построить самому. Такие устройства именуют RepRap, где «Rep» указывает на возможность «репликации», то есть самовоспроизведения.

RepRap принтеры могут быть использованы для печати пластиковых деталей, включенных в собственную конструкцию.

Контроллер, направляющие, ремни, моторы и прочие компоненты можно легко приобрести по отдельности.

Разумеется, сборка подобного устройства своими силами требует серьезных технических и даже инженерных навыков.

Некоторые производители облегчают задачу, продавая комплекты для самостоятельной сборки, но подобные конструкторы все равно требуют хорошего понимания технологии.

Вариант популярного RepRap принтера Prusa позднего, третьего поколения

Если же вам по душе мастерить вещи собственными руками, то RepRap принтеры приятно порадуют ценой: средняя стоимость популярного дизайна Prusa Mendel ранних поколений составляет порядка $500 в полной комплектации.

И, несмотря на свою «самодельную сущность», RepRap принтеры вполне способны производить модели с качеством на уровне дорогих фирменных собратьев.

Обыденные же пользователи, не желающие вникать в тонкости процесса, а требующие лишь удобное устройство для бытовой эксплуатации, могут приобрести FDM-принтер в готовом виде.

Многие компании делают упор на развитие именно пользовательского сегмента рынка, предлагая на продажу 3D-принтеры, готовые к печати «прямо из упаковки» и не требующие серьезных навыков в обращении с компьютерами.

Бытовой 3D-принтер Cube производства компании 3D Systems

Самым известным примером бытового 3D-принтера служит 3D Systems Cube.

Хотя это устройство и не блещет огромной зоной построения, сверхвысокой скоростью печати или непревзойденным качеством изготовления моделей, оно удобно в использовании, вполне доступно и безопасно: этот принтер получил необходимую сертификацию для использования даже детьми.

Демонстрация работы FDM-принтера производства компании Mankati: http://youtu.be/51rypJIK4y0

Лазерная стереолитография (SLA)

Стереолитографические 3D-принтеры широко используются в зубном протезировании

Стереолитографические принтеры – вторые по популярности и распространенности после FDM-принтеров.

Эти устройства позволяют добиваться исключительно высокого качества печати.

Разрешение некоторых SLA-принтеров исчисляется считанными микронами – неудивительно, что эти устройства быстро завоевали любовь ювелиров и стоматологов.

Программная сторона лазерной стереолитографии практически идентична FDM-печати, поэтому не будем повторяться и затронем лишь отличительные особенности технологии.

Лазеры и проекторы

Проекторная засветка фотополимерной модели на примере DLP-принтера Kudo3D Titan

Стоимость стереолитографических принтеров стремительно снижается, что объясняется растущей конкуренцией ввиду высокого спроса и применением новых технологий, удешевляющих конструкцию.

Несмотря на то, что технология обобщенно называется «лазерной» стереолитографией, наиболее современные разработки в большинстве своем применяют ультрафиолетовые светодиодные проекторы.

Проекторы дешевле и надежнее лазеров, не требуют использования деликатных зеркал для отклонения лазерного луча, а также имеют более высокую производительность. Последнее объясняется тем, что контур целого слоя засвечивается целиком, а не последовательно, точка за точкой, как в случае с лазерными вариантами. Этот вариант технологии называется проекторной стереолитографией, «DLP-SLA» или просто «DLP». Тем не менее, на данный момент распространены оба варианта – как лазерные, так и проекторные версии.

Кювета и смола

Фотополимерная смола заливается в кювету

В качестве расходных материалов для стереолитографических принтеров используется фотополимерная смола, внешне напоминающая эпоксидную. Смолы могут иметь самые разные характеристики, но все они обладают одной чертой, краеугольной для применения в 3D-печати: эти материалы затвердевают под воздействием ультрафиолетового света. Отсюда, собственно, и название «фотополимерные».

В полимеризованном виде смолы могут иметь самые разные физические характеристики. Некоторые смолы напоминают резину, другие – твердые пластики вроде ABS. Возможен выбор разных цветов и степени прозрачности. Главный же недостаток смол и SLA-печати в целом – стоимость расходных материалов, значительно превышающая стоимость термопластиков.

С другой стороны, стереолитографические принтеры в основном применяются ювелирами и стоматологами, не требующими построения деталей большого размера, но ценящими экономию от быстрого и точного прототипирования изделий. Таким образом, SLA-принтеры и расходные материалы окупаются очень быстро.

Пример модели, напечатанной на лазерном стереолитографическом 3D-принтере

Смола заливается в кювету, которая может оснащаться опускаемой платформой. В этом случае принтер использует выравнивающее устройство для разглаживания тонкого слоя смолы, покрывающего платформу, непосредственно перед облучением. По мере изготовления модели платформа вместе с готовыми слоями «утапливается» в смоле. По завершении печати модель вынимается из кюветы, обрабатывается специальным раствором для удаления остатков жидкой смолы и помещается в ультрафиолетовую печь, где производится окончательная засветка модели.

Некоторые SLA и DLP принтеры работают по «перевернутой» схеме: модель не погружается в расходный материал, а «вытягивается» из него, в то время как лазер или проектор размещаются под кюветой, а не над ней. Такой подход устраняет необходимость выравнивания поверхности после каждой засветки, но требует использования кюветы из прозрачного для ультрафиолетового света материала – например, из кварцевого стекла.

Точность стереолитографических принтеров чрезвычайно высока. Для сравнения, эталоном вертикального разрешения для FDM-принтеров считается 100 микрон, а некоторые варианты SLA-принтеров позволяют наносить слои толщиной всего в 15 микрон. Но и это не предел. Проблема, скорее, не столько в точности лазеров, сколько в скорости процесса: чем выше разрешение, тем ниже скорость печати. Использование цифровых проекторов позволяет значительно ускорить процесс, ибо каждый слой засвечивается целиком. Как результат, производители некоторых DLP-принтеров заявляют о возможности печатать с разрешением в один микрон по вертикали!

Видео с выставки CES 2013, демонстрирующее работу стереолитографического 3D-принтера Formlabs Form1: http://youtu.be/IjaUasw64VE

Разновидности стереолитографических принтеров

Настольный стереолитографический принтер Formlabs Form1

Как и в случае с FDM-принтерами, SLA-принтеры поставляются в широком диапазоне с точки зрения габаритов, возможностей и стоимости. Профессиональные установки могут стоить десятки, если не сотни тысяч долларов и весить пару тонн, но быстрое развитие настольных SLA и DLP-принтеров приводит к постепенному снижению стоимости аппаратуры без потери качества печати.

Такие модели как Titan 1 обещают сделать стереолитографическую 3D-печать доступной для небольших компаний и даже для бытового использования, имея стоимость в районе $1 000. Form 1 от компании Formlabs уже доступен по отпускной цене производителя в $3 299.

Разработчик же DLP принтера Peachy вообще намеревается преодолеть нижний ценовой барьер в $100.

При этом стоимость фотополимерных смол остается достаточно высокой, хотя средняя цена за последнюю пару лет упала со $150 до $50 за литр.

Само собой, растущий спрос на стереолитографические принтеры будет стимулировать рост производства расходных материалов, что будет вести к дополнительному снижению цен.

Перейти на главную страницу Энциклопедии 3D-печати

3dtoday.ru

Что может быть напечатано на 3D-принтере?

Использование 3D-технологий позволяет создавать поистине уникальные и неповторимые вещи. Возможности аддитивных методов безграничны, поэтому любая фантазия или задумка с легкостью воплощается в реальный объект. То, что было напечатано на 3D-принтере, может по праву называться современным искусством. Мы подготовили для вас список из 9-ти самых потрясающих изделий и объектов, созданных на трехмерном принтере.

Пальмы с солнечными батареями

В ОАЭ было напечатано на 3D-принтере специальные устройства с бесплатной раздачей Wi-Fi. Сделаны эти изделия в виде пальм, которыми украсили улицы в Дубае. Кроме того, что возле них можно подключиться к сети интернет, они также оснащаются солнечными батареями. Поэтому при желании от такой «пальмы» можно подзарядить телефон или любой другой электронный прибор.

Использование 3D-принтеров позволило создать прочные устройства необычной формы. Для изготовления применили бетон и волоконно-армированный пластик. Примечательно, что подобные установки надежно защищены от воздействия ультрафиолетовых излучений и влаги. Эти уникальные пальмы выполняют еще одну важную функцию – освещают город в темное время суток.

Автомобиль, напечатанный на 3D-принтере

Современный мир настолько динамично развивается, что на смену обычным транспортным средствам пришли инновационные изделия, напечатанные на 3D-принтере. Известно много примеров подобных автомобилей. Одним из них является продукт компании Lосal Моtors. Его представили в прошлом году в Лас-Вегасе. Для его создания применялся метод DDМ. Кузов произвели из термопластичных материалов. Остальные же детали выпускали преимущественно из углеродных волокон и АВS-пластика в соотношении 20% и 80%, соответственно. В среднем такое творение автомобильной промышленности стоит около 53-х тысяч долларов.

Но это не единственная машина, напечатанная на 3d-принтере. Свеженький пример высокотехнологичного авто – суперкар Вlаde, новое творение Divergent Microfactories. По сути, это каркасная структура алюминиевых узлов и карбоновых стержней. Аддитивная технология позволила не только сэкономить материалы для изготовления машины, но и облегчила ее на целых 90%! Оборудовали этот суперкар 700-литровым двигателем, что позволяет ему разгоняться до сотни всего за 2,2 секунды.

«Зеленый велосипед»

Байки, напечатанные на 3D-принтере, фото их деталей не сложно найти в Интернете. В принципе, многие фирмы и компании выпускали свои версии 3D-печатных великов. Но сейчас хотелось бы поговорить о модели, напечатанной на 3D- принтере от Еuroсоmpositi. Назвали велосипед Вhulk.

Он считается первым в своем роде устройством, которое снабжается абсолютно экологически чистой рамой. При этом она может похвастаться высокой устойчивостью к воздействию окружающей среды. Раму напечатали из биоразлагаемого РLA-пластика. Примечательно, что для ее создания затратили намного меньше усилий, времени и энергии, чем при производстве металлической рамы.

Применение 3D-технологий в медицине

Возможности 3d-принтера в медицинской отрасли безграничны. Особых успехов удалось добиться в сфере протезирования. Одним из успешных проектов, посвященных этому, считается Аrt 4 Leg. Его суть – создание поверхностей с аутентичным дизайном. Впоследствии данные поверхности крепят к протезам мощнейшими магнитами. Что это дает? Уникальные возможности 3D-печати позволяют обладателям необычных протезов выражать свою индивидуальность.

Что можно напечатать на 3D-принтере еще? Некоммерческая организация «Орeratiоn оf Норе» продемонстрировала уникальные возможности аддитивной технологии. Ей удалось успешно восстановить поврежденную часть лица пациента. Изначально провели компьютерную томографию, после чего преобразовали полученные изображения в трехмерные данные. Затем напечатали модель челюсти на 3D-принтере так, что можно было с ее помощью полностью реконструировать лицо. Для этого врачи провели 12-ти часовую операцию.

Высокое качество 3D-принтера позволяет даже создавать отдельные человеческие органы. Пока их используют как модели для передоперационных тренировок. Но не за горами времена, когда такие органы будут трансплантировать больным, спасая тем самым их жизни.

Что можно напечатать на 3D-принтере: фото настоящего оружия

Первым 3D-печатным оружием считается револьвер Джеймса Патрика. Практически все элементы PM522 Washbear .22LR были напечатаны с помощью аддитивной техники. Еще один пример оружия – полуавтоматический пистолет Shutу МР-1. Это вполне «серьезный» агрегат для убийств, хотя и мелкокалиберный.

Венцом коллекции 3D-печатного оружия считается Rail Gun. Несмотря на то, что этот пластиковый пистолет не отличается самым мощным выстрелом, зато он выглядит очень «грозно» и устрашающе.

Стальной мост

Возможности 3D-печати активно используют и в строительной отрасли. Можно назвать немало архитектурных объектов, которые так или иначе были созданы с помощью аддитивной технологии. Поистине впечатляющим является проект, над которым работают Jоris Lааrmаn Lаb, Неijmаns и МХ3D. Компании планируют возвести в исторической части Амстердама стальной пешеходный мост.

Для строительства моста будет использоваться технология MX3D и промышленные манипуляторы с шестью степенями свободы. Данное решение позволит делать металлические конструкции прямо в воздухе. Отказ от традиционной сварки в пользу послойного наплавления металлических капель делает проект поистине уникальным.

Тапкабургер

Описание 3D-принтера и его безграничных возможностей стоит начать с того, что на нем можно делать еду. Аддитивные механизмы используют при изготовлении необычных макаронных и кондитерских изделий – этим уже никого не удивить. А вот «Shoe Burger» действительно поражает.

Этот бургер изготовляется в форме вашего кроссовка или туфли. Чтобы получить такой необычный тапкабургер, вначале необходимо отсканировать свой башмак и сделать его цифровую копию. Дальше очередь за ее печатью на трехмерном принтере. Следующий шаг – обратная форма из термостойкого пищевого силикона. Ее-то вы потом и зальете тестом перед отправкой в духовку.

Наноскульптуры

Существует не только 3D-принтер 3D Mini, но и возможность печати мини-скульптур и нанообъектов. Так, к примеру, Джонти Харвитс поражает всех своими необычными творениями. Их нельзя потрогать, нельзя даже увидеть без микроскопа. Секрет уникальных изделий состоит в особом устройстве для печати. Такое устройство избавляет от всяческих проблем со слоистостью. Правда, если вы захотите на нем напечатать модель, которую можно будет увидеть, ждать придется очень долго.

Институт «KarlsruheInstitute of Тесhnology» создал особую технологию мультифотонной литографии, благодаря которой и возможна печать подобных наноскульптур. Основан новый метод на феномене двухфотонного поглощения.

Биопечать

Другими словами, это особый Би-код, технология печати объектов с помощью пчел. Дженнифер Берри смогла контролировать пчел, тем самым добилась того, что они строят ульи по заданным формам. Биолог сделала своеобразный биопринтер, то есть искусственный улей. В нем пчелы живут под ее контролем и под ее руководством делают соты.

Технология не отличается сложностью. Вначале задается некая форма, которая должна ограничивать внешние границы создаваемой модели. Кроме этого, необходимо показать направление «роста» сот при помощи специального материала. Все это нужно поместить в прозрачный бокс. Внутри него обязательно поддерживается определенный микроклимат.

make-3d.ru

обзоры, видео, анонсы. Заходи на 3Dwiki!

В этой рубрике мы публикуем полезные материалы о 3D-принтерах: анонсы новых устройств, обзоры, видео, фотографии и комментарии экспертов.

3д-принтеры: анонсируем и рассказываем

Каждый 3D-принтер, который поступает в продажу или анонсируется, появляется на портале 3Dwiki. Мы стараемся предоставить о нем всю информацию, которая интересна нашим читателям:

  • видео 3D-принтера;
  • его фотографии;
  • обзор от ведущих мировых сайтов по 3D-печати;
  • технические характеристики;
  • детальное описание возможностей.

Мы стремимся размещать актуальные сведения сразу же, как только их анонсируют сами разработчики.

Печать на 3D-принтере во всех подробностях

К каждой новости или обзору 3д-принтера прилагаются информативные видео и фото – если они есть в интернете, конечно. Нам важно, чтобы наши читатели посмотрели на гаджет в действии – на механизм его работы, детали, габариты, чтобы они оценили возможности и потенциал устройства.

Часто презентация нового 3D-принтера вызывает вопросы:

  • не очень понятно, как он работает – разработчики опять забыли прояснить пару нюансов;
  • не слишком ли дорого его хотят продавать, и сколько он будет стоить в России?
  • а я смогу распечатать фигурку своей мамы? И где ее отсканировать?

Эти и другие животрепещущие вопросы обсуждаются на форуме 3Dwiki. Там встречаются ОЧЕНЬ продвинутые пользователи, которые знают даже больше, чем штатные сотрудники портала.

Предпринимателей после анонсов и обзоров 3д-принтеров интересует другое:

  • подходит ли новинка для малого бизнеса?
  • окупится ли она?
  • не возникнет ли проблем с комплектующими и расходными материалами?

Обсудить 3D-принтеры с практической стороны также можно на нашем форуме – среди пользователей наверняка найдутся бизнесмены и специалисты, которые поделятся советами.

А еще почаще заходите в рубрику 3D-идеи для бизнеса – возможно, там вас осенит, и вы откроете прибыльный проект с помощью трехмерного принтера, своего таланта и нашего сайта. Было бы здорово!

Британский изобретатель разрабатывает 3D-принтер на базе самодельного SCARA-робота

Роботы типа SCARA отличаются высокой точностью и скоростью работы, поэтому, они часто устанавливаются на сборочных линиях. Однако, индустриальные или лабораторные роботы слишком дороги для подавляющего большинства “простых” пользователей.
Британский изобретатель Шон (Clanzer) уже больше года разрабатывает свой собственный 3D-принтер на базе…&nbsp

Китайцы представили огромный 3D-принтер и собираются напечатать самый большой в мире 3D-объект

Китайская компания Qingdao Unique Products Develop Co Ltd представила самый большой в мире 3D-принтер на международной выставке-конференции по 3D-печати, проходившей 18-21 июня в городе Циндао.

Это 3D-принтер, предназначенный для строительства зданий, с рабочим объемом 12х12х12 м, работающий по технологии FDM….&nbsp

Детский 3D-принтер Printeer на Кикстартере

Стартап Mission Street Manufacturing из калифорнийской Санта-Барбары собирает на Kickstarter деньги на массовое производство своего FDM-принтера Printeer, специально предназначенного для детей и школьников.

Создатели Printeer поясняют:
В цифровой век, когда обучение технологическим навыкам занимает одно из важнейших мест в детском…&nbsp

Соберите собственный 3D-принтер для лазерного спекания с проектом OpenSLS

Энтузиаст 3D-печати Андреас Бастиан (Andreas Bastian) разрабатывает доступный open-source 3D-принтер, использующий технологию лазерного спекания (SLS) под названием OpenSLS. Бастиану помогает группа исследователей из Исследовательского института передового производства (Advanced Manufacturing Research Institute) Университета Райса.
Сегодня профессиональные SLS-принтеры производят исключительно компании EOS и…&nbsp

3D-принтер X1000 от 3DP Unlimited позволит печатать большие прототипы

Компания 3DP Unlimited создала большой 3D-принтер X1000 специально для архитекторов и инженеров, которым нужно создавать прототипы в реальном масштабе или модели больших объектов, таких как здания или городские ландшафты. Новый 3D-принтер имеет солидный рабочий объем с параметрами 1 х 1…&nbsp

FormLabs представила SLA-принтер второго поколения Form 1+

Американская компания FormLabs, разработчик SLA-принтера Form 1, анонсировала выпуск его обновленной модификации — Form 1+.

3D-принтер Form 1 был выставлен на Kickstarter в 2012 году, заработав там около 3 млн. долларов. Позже, FormLabs также получила 19 млн. долларов инвестиций от DFJ…&nbsp

3D-принтер MakerFarm 8″ Prusa i3 обойдется в один биткоин

На краудфандинговой платформе BitcoinStarter недавно появился проект, посвященный RepRap 3D-принтеру MakerFarm 8″ Prusa i3. Компания готова предоставить комплект для самостоятельной сборки 3D-принтера любому спонсору, готовому вложить более 1 биткоина. Интересно, что при текущем курсе 660 долларов за 1 биткоин, 3D-принтер…&nbsp

Стартап BetAbram из Словении готовит к выпуску несколько моделей строительных 3D-принтеров

Семейство строительных 3D-принтеров BetAbram состоит из трех машин, различающихся размерами и, соответственно, рабочим объемом. Самый маленький из этих 3D-принтеров — Р3, может печатать сооружения площадью 12 м², большие версии Р2 и Р1 — строения площадью 72 м² и 144 м²…&nbsp

В Китае появился гигантский цветной FDM 3D-принтер

Компания Sanya Industrial Innovation Design Center представила самый большой в Китае цветной пластиковый 3D-принтер с рабочим объемом 3,8 х 2,4 х 1,8 м. При этом длину по оси Х можно удлинить до 6 метров. На разработку 3D-принтера весом 15 тонн…&nbsp

На Maker Faire 2014 продемонстрирован прототип универсального экструдера для 3D-печати пастой

Канадский стартап Structur3d Printing разрабатывает сменный экструдер для 3D-принтеров, который позволит печатать широким спектром пастообразных материалов.

Теретически, экструдер Discov3ry подходит для установки практически в любой 3D-принтер, включая Replicator, Ultimaker, RepRap и большинство самодельных устройств. Сам процесс 3D-печати пастой аналогичен обычной…&nbsp

“Тепловой” 3D-принтер Blueprinter запущен в продажу

Датский стартап Blueprinter ApS объявил о начале продаж своего 3D-принтера Blueprinter. Эта машина позиционируется как “доступный по цене офисный 3D-принтер, обеспечивающий высокое качество печати”. Его главная особенность — это фирменная технология постройки объектов методом “выборочного теплового спекания” (Selective Heat Sintering,…&nbsp

В Нидерландах разработали металлический фотополимерный 3D-принтер

Центр энергетических исследований Нидерландов (ECN) разработал новую технологию металлической 3D-печати на основе процесса цифровой обработки света (DLP). Новая технология исключает стадию расплавления металла, благодаря чему изделия имеют более однородную структуры и повышенные свойства, по сравнению с традиционными методами металлической 3D-печати.

Ян…&nbsp

3dwiki.ru

20 примеров применения 3D-печати. 3D-принтеры сегодня!

Друзья, небольшое вступление!
Перед прочтением новости, позвольте пригласить вас в крупнейшее сообщество владельцев 3D-принтеров. Да, да, оно уже существует, на страницах нашего проекта! Подробнее >>>

Прогресс 3D-печати за последние годы набрал настолько стремительную скорость, что скоро мы перестанем рассказывать о том, что можно создать с помощью аддитивного производства. Будет проще упомянуть то, что сделать нельзя. Да и этот список будет стремительно сокращаться. Но пока давайте взглянем на некоторые примеры, показывающие широкий спектр возможностей 3D-печати. Заранее предупреждаем: список далеко не полон.

Плод

Подарок для нетерпеливых родителей

Молодые родители зачастую испытывают непреодолимое влечение обзавестись самыми всевозможными предметами, так или иначе связанными с их ребенком, пусть даже еще не рожденным. Японская компания Fasotec предлагает будущим родителям модели еще не рожденных младенцев, выполненные по изображениям настоящих плодов, полученных с помощью магнитно-резонансной томографии. Готовая модель состоит из двух материалов – фигурки плода, выполненной из белого фотополимера, и прозрачного материала, имитирующего форму утробы матери. При цене в примерно $1 275 удовольствие далеко не из дешевых, но у Fasotec уже появились конкуренты. Так, компания 3D Babies предлагает схожую услугу всего за $200, хотя размер готовой модели значительно меньше, да и качество не совсем на одном уровне.

Хотя желание заполучить подобную модель может показаться несколько странным, есть вполне логичное объяснение. Как оказывается, идея изначально была направлена на предоставление слепым родителям возможность «взглянуть» на УЗИ еще не рожденного ребенка.

Оружие

Функциональная 3D-печатная ствольная коробка от AR-15 без каких-либо номеров

Возможность 3D-печати оружия не на шутку переполошила правоохранительные органы по всему миру. В конце концов, даже простые FDM принтеры позволяют создавать полностью пластиковые пистолеты. Пусть такое оружие и примитивно, но даже одноразовый пистолет с одним единственным патроном в руках преступника может стоить кому-то жизни, а проследить такое оружие невозможно. Тем не менее, находятся и люди, считающие, что 3D-печать оружия должна быть разрешена. Так, Конституция США дает право гражданам на свободное ношение оружия, хотя определенные ограничения все равно применяются. Некоммерческая организация Defence Distributed, выпустившая в свободный доступ пластиковый пистолет Liberator, пошла дальше, обнародовав дизайн нижней части ствольной коробки карабина AR-15. AR-15 – фактически гражданский аналог, даже прототип автоматической винтовки M-16, состоящей на вооружении нескольких стран мира. Нижняя же часть ствольной коробки несет на себе регистрационный номер – это единственная часть винтовки, которую нельзя приобрести как запасную. Таким образом, печать этой части может позволить обойти стороной необходимость регистрации оружия. Некоторые страны уже наложили запрет на 3D-печать оружия, хотя не совсем непонятно, как применять этот запрет на практике.

Одежда

Один из дизайнов Снежаны Гросс

Некоторые расходные материалы для 3D-печати, в особенности мягкие фотополимеры, вполне пригодны для изготовления одежды и даже белья. Бюстгальтер на иллюстрации был изготовлен методом лазерного спекания из нейлона. Этот дизайн от Continuum Fashion призван продемонстрировать возможности, открываемые 3D-печатью для кутюрье. Однако не думайте, что это экспериментальная модель: компания предлагает готовые изделия на продажу на сайте Shapeways.

Не обошли новую технологию стороной и российские дизайнеры: Снежана Гросс продемонстрировала дизайны повседневной одежды, интегрирующие функциональные 3D-печатные компоненты.

Предметы искусства

Распечатать просто. Сфотографировать – как повезет

Не желаете ли реплику Венеры Милосской? Никаких проблем, только выберите материал и способ печати. Правда, мрамора в меню пока еще нет, но имитаторы песчаника уже имеются. Одним из первых материалов для 3D-печати вообще был гипс. Трехмерное изображение оригинала можно получить с помощью обычной фотографии с последующей конвертацией в 3D. Кроме того, в последнее время на рынке появляется все больше 3D-сканеров, включая портативные ручные варианты, способные снимать изображения крупногабаритных объектов. Остается сущий пустяк – договориться о стереофотосессии с охраной Лувра.

Хотя, если вам лень делать цифровые модели самим, их всегда можно скачать.

Продукты

Что на завтрак?

Пусть до гигантских хот-догов еще далеко, но печатать фаршем 3D-принтеры уже научились. Примером тому служит кулинарный принтер Foodini –простое и практичное устройство, использующее шприцевую экструзию. Причем, печать возможна не только фаршем, но и любым пастообразным продуктом – тестом, сыром, томатным пюре. Единственное, что Foodini пока не по силам, это термическая обработка. Стоит ожидать, что в скором времени появятся устройства, комбинирующие 3D-печать с холодильными агрегатами и, скажем, микроволновыми печами. Тогда могут стать былью научно-фантастические сказки о «репликаторах». Одно нажатие кнопки, и устройство выложит желаемую пиццу и запечет ее на радость пользователю. Только один вопрос: вам тонкое тесто или пышное?

Персонажи

Части моделей, использовавшихся для анимации главного героя мультфильма ParaNorman

Будь-то миниатюрная версия гигантского робота из любимой манги, жуткое инопланетное создание из «Чужого» или фигурка Киану Ривса (как в черном плаще и солнцезащитных очках, так и с бородой и сэндвичем, сидя на лавочке), 3D-печать позволяет создавать реплики героев игр и фильмов на радость фанатам. А тот факт, что распечатать подобные сувениры можно даже на бытовых 3D-принтерах, открывает широкие возможности для любителей коллекционировать подобные модели – ведь далеко не все из них доступны в продаже. Хотите модель редкого самолета? Напечатайте ее.

А что самое интересное, это применение уже возымело обратный эффект. Персонажи мультфильма ParaNorman были таки распечатаны. Как и костюм нового Робокопа. Правда, внутри него все равна была начинка из человека. Но зачем останавливаться на простой визуализации?

Домашние роботы

Ранний прототип «терминатора»

Появление недорогих плат Arduino сделало возможным домашнее проектирование самых разных устройств с электронной начинкой. Вот вам и собственные 3D-печатные роботы. Напечатали корпус, вставили сервомоторы и плату, и у вас новый помощник по хозяйству. Но что делать людям, которые не разбираются в программировании или элементарной пайке? Ученые из Массачусетского технологического института разрабатывают проект, направленный на автоматизацию проектирования и постройки домашних роботов. В идеале, пользователь должен будет лишь задать необходимые функции для будущего устройства, после чего система скомпилирует необходимый дизайн и отправит его на печать. Несколько часов спустя можно будет забрать готовое устройство – робота-паучка для протирки люстр или автомат для переворачивания блинов.

Авиация

3D-печатная деталь, используемая в прототипах китайских истребителей пятого поколения

Игрушечные самолеты мы уже упомянули. А как насчет настоящих? В авиастроительной промышленности тоже есть место аддитивному производству, хотя здесь уже не обойтись без дорогих промышленных установок, способных создавать высококачественные детали, включая цельнометаллические. Ведущие авиастроительные корпорации, включая Boeing и Lockheed Martin, уже испытывают технологии лазерного спекания и плавки для производства систем вентиляции, несущих компонентов и даже деталей реактивных двигателей. Китайские же инженеры взялись за дело с настоящим размахом, создавая установки для аддитивного производства деталей весом до 300 тонн.

Космос

Dragon v2 – новейшее детище компании Space

Космическая промышленность не отстает от авиационной по заинтересованности в 3D-печати. NASA успешно испытала титановые форсунки ракетных двигателей, а несколько недель назад Илон Маск, глава частной космической компании SpaceX провел презентацию нового орбитального корабля Dragon v2, также использующего двигатели с 3D-печатными деталями.

Биопечать

Биоручки могут помочь в лечении переломов

Сосуды, ткани, целые органы – сразу несколько компаний занимаются разработкой производства органических имитаторов, полностью аналогичных натуральным тканям. Хотя до трансплантации 3D-печатных органов еще далеко, работы в этом направлении ведутся. Параллельно с производством органических тканей с нуля разрабатываются и методы восстановления поврежденных тканей – например хрящевых или костных. Устройства, называемые «биоручками», способны наносить живые клетки на поврежденные участки, способствуя их заживлению.

Протезы

Титановые ортопедические протезы с пористой структурой для улучшенной остеоинтеграции

А как быть, если ткани не подлежат восстановлению? 3D-печать может помочь с протезированием. Так, шведская компания Arcam создает установки для электронно-лучевой плавки, позволяющие создавать фактически монолитные металлические изделия, в том числе и из титана. Титановые ортопедические протезы стали одним из наиболее востребованных изделий, создаваемых на устройствах этой компании – по статистике компании их число превышает тридцать тысяч экземпляров.

Мало того, 3D-печатные конечности вполне могут конкурировать с высокотехнологичными образцами с одной лишь разницей – их стоимость не идет ни в какое сравнение. Многие ли люди смогут позволить себе протез руки ценой в десятки тысяч долларов? А как насчет полностью функционального протеза за $50? И это возможно.

Еще более распространенным применением аддитивного производства служит стоматологическое протезирование. Если вам недавно поставили коронку или мостик, вполне возможно, что они были отлиты по моделям, созданным с помощью стереолитографического принтера, печатающего фотополимерными смолами.

Музыкальные инструменты

3D-печатные музыкальные инструменты

Гитары? Флейты? Барабаны? Запросто. Сломали свой гобой – напечатайте новый. Конечно, профессиональные музыканты могут и поспорить: пластиковая гитара? Несерьезно. Но кто сказал, что весь инструмент должен быть из пластика? Тот же гриф можно распечатать из древесного полимера, схожего по плотности с натуральной древесиной. Можно даже напечатать композитный углеволоконный сердечник. А что касается просто художественного оформления любимого клавесина, здесь 3D-печать может творить чудеса. Была бы фантазия!

Обувь

Стильные кроссовки от Люка Фусаро

Восьмикратный чемпион мира в беге на короткие дистанции Усейн Болт прославился своей любовью к золотым вещам. Сюда входят не только медали, но и машины и даже обувь. Во время своего контракта с известным производителем Puma Болт носил фирменные позолоченные кроссовки. А с недавних пор инженер и дизайнер Люк Фусаро взялся за разработку спортивной обуви, которая пришлась бы Усейну по душе. Ее отличительной чертой является золотистый цвет. Ах, да – а еще она предназначена для производства методом 3D-печати. Использование аддитивного производства имеет один важный бонус, а именно возможность производства обуви, точно подогнанной под размер и контуры ноги спортсмена. Производится такая обувь лазерным спеканием, хотя у этой технологии уже появился конкурент.

Препараты

3D-печать может облегчить изготовление смешанных препаратов и помочь с тестированием лекарств на живых тканях

3D-печать активно применяется исследовательскими компаниями не только для разработки методов построения и восстановления тканей, но и для испытаний и производства лекарственных препаратов, зачастую в комбинации с тканевой инженерией. Так, компания Organovo направляет свои усилия на создание искусственных тканей человеческой печени для проверки новых препаратов на токсичность без риска здоровью людей. Но и сами лекарства вполне можно печатать, связывая препараты гелевым материалом. На выходе получаем обычные с виду пилюли, но с комплексным содержанием препаратов, подогнанным под конкретного пациента.

Автомобили

Док Браун знакомится с 3D-печатью. Примерно такой реакции и следовало ожидать

Большинство автомобильных компонентов можно напечатать, но это нецелесообразно экономически, если речь идет о массовом производстве. А вот для прототипирования новых автомобилей 3D-печать подходит прекрасно. Как, впрочем, и для производства уникальных машин или компонентов. Например, можно печатать запасные части для мелкосерийных моделей, снятых с производства. Где еще вы найдете запчасти для, скажем, DeLorean, ставшего прототипом для машины времени из фильма «Назад в будущее»? Единственная небольшая компания, до сих пор производящая части для этого автомобиля, находится в Техасе. Доставка частей может обойтись дороже, чем сама машина, достаточно недорогая.

Кастомизация

Максимальный гламур с минимальными затратами

Почему бы не взять готовое изделие и не добавить декоративные элементы? Превратите свой велосипед в произведение искусства всем на зависть. Позолоченные ажурные крепления на черном шасси заставят прохожих оглянуться. Но необязательно останавливаться на декоративном аспекте! Может быть, вас не устраивает сиденье? Почему бы не распечатать новое? Или добавить более удобные ручки? Клаксон в стиле 1910-х?

Мебель

Один из хитроумных дизайнов Йориса Лаармана

Игрушечная мебель? Нет, не только. Появление композитных материалов для FDM печати делает возможной печать «деревянной» мебели, практически не отличимой от настоящей. Собственно, в материале Laywoo-D3 не обошлось без настоящей древесины в виде микроопилок. Этот материал даже пахнет, как дерево! Готовые изделия легко поддаются механической обработке и лакировке.

Или Вам больше по душе металлическая мебель? Голландский дизайнер Йорис Лаарман создал собственную установку для 3D-печати металлом, без использования дорогостоящих порошков, вакуумных камер и лазеров. Устройство рисует металлом по воздуху, позволяя создавать элегантные переплетенные дизайны.

Ювелирные изделия

Красиво и функционально

Наглядной демонстрацией точности 3D-печати является ее применение в ювелирном деле. Сразу стоит сказать, что далеко не все технологии подходят для этой задачи. Широко распространенные FDM принтеры привлекательны своей экономичностью, но по качеству печати не дотягивают до стандартов ювелирного производства. Наиболее популярным выбором является лазерная (SLA) и проекторная (DLP) стереолитография – установки, использующие эти технологии, позволяют печатать фотополимерные детали необыкновенной точности. Такие изделия используются в качестве мастер-моделей при создании ювелирных литейных форм, значительно упрощая процесс производства.

Но есть и вариант прямого аддитивного производства ювелирных изделий: технологии лазерного спекания и плавки позволяют создавать готовые изделия из металлического порошка, включая порошки драгоценных металлов. Правда, стоимость таких установок и материалов зачастую слишком высока для широкого применения даже ювелирами.

Строительство

3D-печать зданий поможет с жилищными проблемами

Возможность использования 3D-принтеров для строительства зданий давно занимает умы инженеров по всему миру: американские военные всерьез рассматривают использование 3D-печати бетоном при развертывании баз, китайские специалисты же вовсю экспериментируют со строительством бетонных «коробочек». Правда, эти попытки пока достаточно примитивны, ведь настоящему дому потребуется и инфраструктура – дренаж, проводка… Весьма многообещающи попытки строительства полноценного дома Андреем Руденко. Андрей сконструировал собственный принтер, способный печатать коммерчески доступными цементными смесями. Причем, у него уже появились конкуренты. Так, компания BetAbram планирует выпустить в продажу принтеры для печати зданий площадью до 16х9м. Цена вопроса – около $44 000 для самой большой из трех моделей. Правда, «больше» – не обязательно «лучше». Испанские разработчики пытаются идти в направлении миниатюризации строительных 3D-принтеров, создавая роботы, способные использовать уже построенные элементы зданий в качестве рабочей опоры.

Какой метод станет наиболее практичным, покажет время. Но в случае успеха любого из них, строительная отрасль может сделать качественный рывок, выраженный в повышенной экономии, безопасности и скорости возведения зданий.

3D-принтеры

Что еще можно напечатать на 3D-принтере? Еще один 3D-принтер! Пусть пока и не целиком: необходимые электронные и электромеханические компоненты пока не подлежат печати, но это лишь вопрос времени. Почти все используемые материалы или близкие аналоги уже были опробованы различными методами аддитивного производства. Осталось лишь дождаться появления машин, способных использовать полный диапазон расходных материалов. Тогда проект RepRap, давший толчок развитию компактных самовоспроизводящихся 3D-принтеров, придет к логическому завершению.

Статья подготовлена для 3DToday.ru

3dtoday.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о