Керамзитоблок состав: состав, виды, характеристики плюсы и минусы блоков из керамзитобетона

Содержание

состав, виды, характеристики плюсы и минусы блоков из керамзитобетона

1. Состав керамзитоблока.

Представим состав керамзитобетонной смеси с удельным весом 1500 кг/м 3 в виде таблицы*.

Таблица 1: Состав керамзитобетонной смеси

Наименование материалаМасса, кг% от массы
Цемент М40043026,7
Керамзит51034
Песок42028
Вода1409,3

*Данные приведены для 1м3 керамзитобетонной смеси.

При снижении % содержания цемента и песка удельный вес керамзитобетонной смеси будет уменьшаться.

В составе легких смесей с удельным весом до 1000 кг/м 3 песок может отсутствовать, содержание цемента уменьшается, а керамзита — растёт.

1.1. Цемент (ГОСТ 10178-85).

Для производства блоков необходим цемент марки не ниже М-400.

1.2. Керамзит (ГОСТ 9757-90).

Керамзит – легкий пористый материал в виде гравия, получаемый в результате обжига легкоплавких глинистых пород. Чаще всего для производства керамзитоблоков используют фракции 5-10 мм.

1.3. Песок (ГОСТ 8736-93).

В качестве наполнителя используется песок крупной или средней фракций, который создаёт скелет блока.

1.4. Вода (ГОСТ 23732-79).

Предпочтительно применение воды без загрязняющих примесей.

2. Классификация.

Керамзитоблоки являются стеновыми бетонными камнями и должны соответствовать ГОСТ 6133-99. Они классифицируются по следующим параметрам:

2.1. По назначению.

  • Теплоизоляционные (удельный вес 350-600 кг/м 3) — применяют для утепления зданий.
  • Конструктивно-теплоизоляционные (удельный вес 600-1400 кг/м 3) — используют преимущественно для возведения однослойных стеновых панелей.
  • Конструктивные (удельный вес 1400-1800 кг/м 3) — используются для несущих конструкций домов и инженерных сооружений (мосты, эстакады).

2.2. По применению.

  • Стеновые блоки – для строительства стен (как наружных, так и внутренних).
  • Перегородочные блоки – для возведения перегородок.

2.3. Размеры.

  • ГОСТ 6133-99 предусматривает следующие размеры блоков для стен: 90х190х188мм, 190х190х188мм, 290х190х188мм, 390х190х188мм, 288х138х138мм, 288х288х138мм.
  • Размеры перегородочных блоков — 190х90х188мм, 390х90х188мм, 590х90х188мм.

По согласованию с заказчиком размеры блоков могут меняться.

2.4. По форме.

  • Полнотелые – сплошные блоки без пустот.
  • Пустотелые – блоки как с глухими, так и со сквозными пустотами, формируемыми в процессе изготовления для придания блоку необходимых эксплуатационных характеристик.

3. Характеристики.

3.1. Прочность.

Значения прочности керамзитоблоков:

  • теплоизоляционных — 5-25 кг/см2;
  • конструктивно-теплоизоляционных – 35 — 100 кг/см2;
  • конструктивных — 100 — 500 кг/см2.

3.2. Объёмный вес.

Объёмный вес керамзитоблоков:  

  • теплоизоляционных — 350-600 кг/м 3;
  • конструктивно-теплоизоляционных – 600 — 1400 кг/м 3;
  • конструктивных — 1400 — 1800 кг/м 3.

3.3. Теплопроводность.

Теплопроводность керамзитоблоков – 0,14-0,66 Вт/(м*К). Теплопроводность растёт с увеличением содержания цемента. По этому показателю теплоизоляционные блоки находятся на уровне дерева. Даже конструктивные предпочтительнее бетона и кирпича. Применение в строительстве пустотелых блоков уменьшает теплопроводность стен и делает дом теплее.

3.4. Морозостойкость.

Морозостойкость увеличивается с уменьшением пористости. Минимальные значения (15 — 50 циклов) — у теплоизоляционных керамзитоблоков. У конструктивно-теплоизоляционных — до 150 циклов, у конструктивных — до 500.

3.5. Усадка.

Усадка  керамзитоблоков находится на уровне тяжелых бетонов — 0,3-0,5 мм/м.

3.6. Водопоглощение.

Водопоглощение керамзитоблоков – 5 — 10% по массе. Значение может быть снижено путём добавления в керамзитобетонную смесь комплексных добавок и пластификаторов.

3.7. Паропроницаемость.

Паропроницаемость керамзитоблоков — 0,3-0,9 мг/(м*ч*Па). Значение увеличивается с увеличением пористости и степени пустотелости. Для теплоизоляционных блоков значения максимальны, для конструктивных – минимальны.

3.8. Огнестойкость.

Предел огнестойкости керамзитоблоков – 180 минут при температуре 1050 С.

3.9. Стоимость.

Стоимость керамзитоблоков зависит от степени пустотелости, от прочности, определяющейся содержанием цемента, и находится в пределах 2200-3500 руб/м3.

3.10. Звукоизоляция.

Звукоизоляционные свойства керамзитоблоков улучшаются с увеличением пористости. Перегородка из теплоизоляционных блоков размерами 590х90х188 мм обеспечивает звукоизоляцию на уровне 45-50 Дб.

3.11. Максимальная этажность строения.

Конструктивные керамзитоблоки позволяют осуществлять высотное строительство. Возможно возведение 12-этажных домов

Таблица 2: Характеристики керамзитоблоков

Наименование показателяЗначениеКомментарий
Прочность, кг/см25-500Минимальные значения прочности — у легких теплоизоляционных блоков, максимальные —  у самых тяжелых конструктивных
Объемный вес, кг/м3350 -1800При увеличении % содержания цемента в керамзитобетонной смеси увеличится объемный вес и прочность
Теплопроводность, Вт/м*К0,14 – 0,66Показатель лучше, чем у кирпича и бетона; ухудшается с ростом % содержания цемента.
Морозостойкость, циклы15-500Минимальные значения — у легких теплоизоляционных блоков, максимальные —  у самых тяжелых конструктивных
Усадка, мм/м0,3 — 0,5Хороший показатель на уровне тяжелых бетонов
Водопоглощение, %5-10Хороший показатель, который может быть улучшен применением комплексных добавок и пластификаторов
Паропроницаемость, мг/(м*ч*Па)0,3-. 0,9Высокое значение в сравнении с другими стройматериалами; увеличивается с ростом пористости и степени пустотелости блоков
Огнестойкость, мин. при температуре 1050 С180Значение выше, чем у других легких бетонов
Стоимость руб/м32200-3500Зависит от содержания цемента в смеси и степени пустотелости
Звукоизоляция, Дб45-50Значение для перегородки из теплоизоляционных блоков размерами 590х90х188 мм; показатель растёт с увеличением содержания керамзита
Максимальная этажность строения, этажей12Достигается при использовании конструктивных блоков

4. Преимущества керамзитоблоков в сравнении с альтернативными материалами.

  • Экологическая безопасность. Керамзитобетон производится из натуральных материалов (цемент, песок, глина), что обеспечивает его высокую экологичность. Материалу присвоен первый класс радиационной безопасности. Он полностью соответствует современным санитарно-гигиеническим требованиям по показателям звукоизоляции и паропроницаемости.
  • Теплопроводность керамзитобетона и использование в строительстве пустотелых блоков делает дома из этого материала теплыми.
  • Низкий удельный вес керамзитоблоков позволяет сэкономить на устройстве фундамента и транспортировке.
  • азмеры и вес блоков снижают затраты рабочей силы и цементного раствора при возведении стен, ускоряют строительство.
  • Низкая гидроскопичность и, как следствие, высокая морозоустойчивость повышают срок службы сооружений из керамзитоблоков, дают возможность экономии на защите стен.
  • Применение блоков со сквозными пустотами позволяет сооружать внутри стен силовые каркасы, повышающие несущую способность конструкций.
  • Низкие значения усадки обеспечивают экономию на косметических ремонтах.

5. Минусы строительства из керамзитоблоков.

  • Керамзитобетон уступает в прочности тяжелым бетонам. Нежелательно использование керамзитоблоков при устройстве фундаментов.
  • Неидеальная геометрия блоков.
  • При многоэтажном строительстве необходимо использовать блоки с повышенным содержанием цемента. Следствием этого является необходимость устройства более мощного фундамента, ухудшение теплоизоляционных качеств сооружения и общее удорожание проекта.

6. Область применения.

В зависимости от назначения керамзитоблоки могут использоваться для утепления домов, строительства зданий (в том числе многоэтажных), возведения инженерных сооружений (мостов, эстакад).

7. Способы транспортировки.

Перевозка керамзитоблоков осуществляется любым транспортом на поддонах. Высота пакета с поддоном не должна превышать 1,3 м. Камни с глухими отверстиями укладывают пустотами вниз. Сформированные транспортные пакеты складируются в один ярус. Не допускается проведение разгрузочно-погрузочных работ вручную.

Описание керамзитоблоков, их разновидности и сравнительный анализ с другими стеновыми блоками

Керамзитоблоки являются эффективным строительным материалом, получившим известность около полувека назад. При его производстве применяется смесь цемента, песка, керамзита и воды. Добавка керамзита в этот состав обеспечивает материалу легкость и теплоустойчивость, не приводя к значительному ухудшению прочностных качеств.




Разновидности керамзитоблоков – от конструктивных особенностей к применению

Классификация материала выделяет готовые изделия по таким направлениям:

  • конструкционные свойства – пустотелые и полнотелые;
  • предназначение – стеновые, перегородочные и облицовочные.

Стеновой (конструкционный) керамзитоблок – применяется для кладки несущих стен. Материал имеет большую прочность и выдерживает давление до 5 МПа (марка М50).

В зависимости от особенностей применения стеновые керамзитоблоки могут быть полнотелыми и пустотелыми.

Полнотелые блоки используются для ответственных конструкций в двух- и трехэтажных домах. Пустотелые блоки оптимальны для одноэтажных зданий, обеспечивая максимальное сохранение тепла.

Применение керамзитоблоков в строительстве реализует две задачи – сэкономить на более дорогом кирпиче и получить тёплое здание. Эти задачи взаимосвязаны, поскольку пористый камень позволяет делать стены тоньше, снижая затраты на работу и расходные материалы.

Перегородочный (простеночный) керамзитоблок отличается от стенового меньшими размерами. Высота таких блоков обычно больше ширины, поскольку не требует выдерживать большие нагрузки и препятствовать температурному воздействию.

Пустотелые перегородочные блоки могут применяться в качестве теплоизоляции, а полнотелые – для создания прочных стен в помещении и легких пристроек во дворе.

Облицовочный керамзитоблок – относится к разновидности конструкционных блоков и существенно ускоряет темп строительства, обеспечивая отделку стен с внешней стороны. Облицовочные блоки могут быть окрашенными или иметь декоративное покрытие.

Окрашенные и цветные блоки содержат в составе природные цветные глины или добавленные при производстве пигменты. Неорганическая природа последних отличается устойчивостью к воздействию окружающей среды, по сравнению с органическими красителями.

Декоративное наружное покрытие может имитировать камень, вагонку или разновидности штукатурки. Керамзитоблоки с облицовкой обычно массивны и заменяют 4-5 обычных блоков.

Их размеры составляют до 60?30?40 см (длина ? высота ? ширина), что позволяет делать кладку в один слой. Крупные размеры камня создают неудобства при переноске и укладке, но все равно позволяют выиграть в скорости работы.

Кладка из керамзитобетона – это отличная база для дальнейшей отделки.

Она обладает хорошей теплоизоляцией, морозостойкостью и с легкостью поддается обработке.

В отдельный вид иногда выделяют конструкционно-теплоизоляционный керамзитоблок. Под ним обычно понимают стеновые пустотелые блоки, которые можно использовать как для теплоизоляции, так и возведения несущих стен дома.

Так на фото выглядит керамзитоблок с круглыми пустотами

Характеристика керамзитоблоков и соответствие требованиям стандартов

Размеры камня и другие прочностные и эксплуатационные свойства нормируются требованиями ГОСТ 6133-99. Наиболее востребованные из стандартных блоков имеют габариты 390?190?188 мм, которые в коммерческих предложениях часто обозначены размерами 40?20?20 см.

Отличия связаны с допустимыми отклонениями (до 2-4 см) и прослойкой раствора, находящейся в кладке.

Прочность керамзитобетонных блоков характеризуется маркой – средним значением выдерживаемого давления (прочность на сжатие), выраженного в кгс/см2. Марки блоков различаются в зависимости от целей использования и особенностей конструируемого здания. Стеновые блоки имеют марку не ниже М50, а простеночные – не ниже М25.

Класс морозоустойчивости блоков показывает количество циклов замерзания и оттаивания без существенной потери прочности и обозначается буквой F.

Для стен домов в центральной части РФ класс морозоустойчивости не должен быть хуже F25. Класс F15 подойдет для регионов страны с умеренным климатом. Морозы Сибири и сильные изменения погодных условий вынуждают использовать камни класса F50 и лучше.

Керамзитобетон выпускается специализированными предприятиями, способными правильно воспроизвести технологию производства. Фирмы-однодневки, не использующие автоматизированные системы смешения и дозировки компонентов, никогда не произведут качественный продукт.

Производство керамзитобетона основано на использовнии цемента, воды и керамзита. Керамзит получают путем обжига легкоплавкой глины.

Стоимость материала находится в пределах 2,5-4,5 тыс. р./м3. Самые легкие пустотелые блоки обойдутся в минимальную цену, соответствующую уровню газо- и пенобетона, обладая близкими к ним параметрами качества.

Характеристика керамзитоблоков, в сравнении с материалами-конкурентами

Среди существующих разновидностей строительных камней, являющихся альтернативой кирпичным и бетонным строениям, выделяются следующие:

Все строительные материалы отличаются индивидуальными свойствами. В зависимости от требований, которые предъявляются к зданию, его предназначения, а также погодных условий и бюджета стройки, можно выбрать наиболее подходящий вариант.

Свойства готовых изделий определяются содержанием керамзита и размером фракций. Все характеристики керамзитоблоков определяются ГОСТом и должны иметь соответствующий сертификат соответствия.

К примеру, главным отличием керамзитоблока от шлакоблока является использование керамзита в качестве добавки, а не шлака.

Сравнивая керамзитоблоки с другими камнями, стоит обращать внимание на комплекс их основных характеристик:

 

СвойстваКерамзитоблокиГазосиликатные блокиПенобетонные блокиШлакоблок
ПлотностьОт низкой до высокойНизкаяСредняяСредняя, высокая
Теплопроводность0,10-0,30 Вт/(м2·?С)0,10-0,15 Вт/(м2·?С)0,14-0,30 Вт/(м2·?С)0,32-0,50 Вт/(м2·?С)
ВодопроницаемостьКерамзит в составе блоков может впитывать влагу, однако при соблюдении технологии производства эта проблема несущественна
Очень гигроскопичны
ГигроскопичныСлабо гигроскопичен, однако быстро разрушается при воздействии воды
ЭкологичностьНе обладает выраженными токсичными свойствамиСами по себе не токсичны, однако после обводнения являются инкубатором грибковБезопасен при современной технологии производства. При покупке материала, приготовленного в кустарных условиях, есть риск получить блоки, в которых в качестве пенообразователя использовалась кровь со скотобойниВозможно выделение вредных веществ из шлака, а также не исключён повышенный естественный радиоактивный фон
Прочность на сжатиеСредняя, не характеризуется большой долей брака в поставляемой продукции
Низкая
НизкаяСредняя, высокая
СтоимостьОт низкой до высокой – широкий ценовой диапазонНизкая, однако может увеличиться во время эксплуатацииНизкая, на уровне газосиликатного материалаНизкая, средняя
Возможность облицовки стенПрисутствуетОтсутствует.Требуют обязательной внутренней и внешней отделкиПрисутствуетПрисутствует
МорозостойкостьСредняя, высокаяВысокаяВысокаяВысокая
Разрушение при эксплуатации, деформация при усадке строенияНе характеризуются склонностью к разрушению, усадка минимальнаяВысокое, склонны к значительной усадкеСклонны к ускоренному разрушению при повышенной влажностиДостаточно легко разрушаются (крошатся), однако не склонны к образованию трещин по всей толщине конструкции
Отклонения в размерах блоковСредние, компенсируются различным количеством раствораМинимальные. Если отклонения значительны, кладка окажется менее прочной и гораздо более холоднойСредние, компенсируются различным количеством раствораНизкие, особенно для распространенных блоков кустарного производства. Компенсируются различным количеством раствора

 

Керамзитоблоки обладают оптимальным комплексом свойств из альтернативных строительных материалов, отличаясь высокой стоимостью. Что лучше, решать потребителю, ориентируясь на предназначение будущей постройки.

Разумеется, нет смысла переплачивать за строительный материал, если его можно заменить более дешевым. Однако при желании сэкономить на кирпичной кладке и получить прочную, теплую и экологически безопасную постройку, керамзитобетонные блоки будут хорошим выбором.

В подтверждение этому можно посмотреть видео о том, чем керамзитоблоки лучше ячеистых бетонов:

Состав и пропорция керамзитобетона на 1м3

Керамзитобетон – один из видов легких бетонов, нашедший широкое применение в строительстве частных домов в нашей стране сравнительно недавно.

В качестве его наполнителя выступает керамзит. Этот материал используется для строительства домов.

Для расчета сметы на строительство будущего дома необходимо будет узнать, сколько штук керамзитобетонных блоков содержится в кубе.

Состав керамзитобетона

В основной состав этого бетона входят следующие компоненты:

  • Цемент.
  • Песок.
  • Керамзит фракции от 0 до 20 мм.
  • Вода.

В зависимости от соотношения этих компонентов можно получить бетон разной марки.

В качестве наполнителя используют гранулированную глину, полученную в результате вспенивания специальным способом, с последующим обжигом. После затвердевания она покрывается плотной оболочкой, которая наделяет материал необходимой прочностью.

При выборе составляющих материала нужно учитывать их калибр и влажность. Если состав будет применяться для стяжки, то керамзит можно брать любых размеров, а в случае выравнивания пола требуется использовать только керамзитовый песок, при этом его зернистость не должна превышать 5 мм.

Песок применяется для повышения эластичности и прочности будущих керамзитобетонных блоков.

Бетон исполняет роль вяжущего компонента, чаще всего применяется портландцемент марки М400 и М500. Он не содержит пластифицирующих компонентов, поэтому не способен уменьшить крепость получаемых блоков. Но если нужна тепловая обработка материала, то в состав нужно добавлять алитовый цемент, который обеспечит быстрое застывание.

В качестве пластификатора в домашних условиях используется мыльный раствор, он наделяет состав пластичностью, и облегчает работу с ним. Если применяется жидкое мыло, то его следует добавлять около 50 грамм на 10 литров раствора.

Вода – неотъемлемая составляющая цементных смесей, обычно указывают ее примерный объем, затем во время приготовления раствора, ее количество корректируют.

От пропорций перечисленных компонентов будут зависеть свойства конечного продукта, его марка и плотность.

Пропорции материала

Керамзитобетон разделяется на несколько марок, начиная от М50 и заканчивая М250. Каждая из них имеет свою плотность, на которую влияет дисперсность керамзита. Для М50 и М100 используется состав с керамзитом мелкой фракции, в итоге получаются плотные и тяжелые блоки.

Приведем пропорции содержащихся материалов для самой «ходовой» марки керамзитобетона 200 и 250.

Таблица пропорции для приготовления марок 200 и 250
материалРасход в кг на 1 м3 раствора
марки 200марки 250
Цемент300400
Песок300280
Керамзит11001100
Вода195195

Жидкость нужно вливать аккуратно, ориентироваться на внешний вид раствора. Идеальная консистенция состава – когда он вязкий, но при этом пластичный.

Если изменить фракцию керамзита, то при выдержке этих же пропорций можно получить новый состав.

Сколько керамзитобетонных блоков в кубе?

Вначале нужно ознакомиться со стандартными размерами этого материала. Они разные, в основном зависят от страны производителя, и могут быть:

  • по длине от 120 до 450 мм;
  • по ширине – от 70 до 490 мм;
  • по высоте — 190 или 240 мм.

В зависимости от размеров доступных в вашем городе блоков производиться расчет их количества на 1 м3.

Для примера возьмем стандартные отечественные размеры керамзитобетона. Они равны: 490×290×240 мм. Сразу нужно перевести их в метры: 0,49×0,29×0,24 м.

Вначале необходимо узнать объем одного блока:

Vблока=0,49×0,29×0,24=0,034104 м3

Затем следует 1 м3 разделить на полученный объем блока:

Nблоков в м3=1/0,034104=29,3≈29 штук.

Количество керамзитобетонных блоков дано с запасом, так как при расчетах не была учтена толщина швов, ведь материал при строительстве укладывается на цементный раствор.

Это примерный алгоритм расчета, после которого можно точно узнать, сколько керамзитобетона приходиться на 1 м3. По этому примеру можно считать требуемое количество других строительных материалов.

Сколько керамзитобетонных блоков можно получить из 1м

3 раствора?

Их расчет будет примерно такой же, как и предыдущие вычисления, с одной лишь разницей: на количество штук рассматриваемого материала будет влиять плотность заполнителя. Чем мельче будут гранулы керамзита, тем больше потребуется цемента, а это изменит пропорции материала, и увеличит расход бетона. Керамзитобетон дает маленькую усадку, поэтому ею при расчетах можно пренебречь. При производстве работ по заливке раствора бетона в формы, происходит потеря материала — это примерно 0,1% на 1 м3. Обязательно учитывайте это.

Керамзитобетонные блоки получают вибропрессованием, после этого процесса выходят плотные и прочные изделия с открытыми порами и ровными краями. В каждой форме предусмотрены пустотообразователи. Они занимают 25-30% от объема блока.

При расчете чистого объема керамзитобетона для блоков с размерами 490×290×240 мм, получается:

Vблока= Vобщ-Vпустот=0,49×0,29×0,24-34×30/100=0,034-0,01=0,024 м3.

Если плотность керамзитобетона марки М200 равна 1600 кг/м3, то масса одного блока будет равна:

m=Vблока×ρ=0,024×1600=38,4 кг.

А 1м3 раствора керамзитобетона марки М 200 весит 1600 кг, получаем, что:

N=1600/38,4=41,7 шт., учитывая потери раствора при заполнении форм, можно считать, что из 1м3 получается 41 штука.

Пропорции керамзитобетонной смеси зависят от предназначения материала и плотности его заполнителя. Для тех, кто хочет заранее просчитать свои затраты и узнать сколько блоков содержится в 1м3 кладки или раствора можно воспользоваться предложенными примерами расчета.

Блоки керамзитобетонные ГОСТ: основные характеристики и требования

Готовое изделие

Керамзитобетон – достаточно популярный материал, что обусловлено его особым набором свойств и качеств. И, наверняка, многие будущие владельцы домов хотя бы потенциально рассматривали изделия из него в качестве материала, пригодного для возведения собственного дома.

Как и к любому другому строительному материалу, к нему предъявляются определенные требования технической документацией. Именно их содержание мы и рассмотрим в данной статье. Блоки керамзитобетонные ГОСТ: о чем говорит стандарт качества?

Содержание статьи

Что представляет собой керамзитобетон и изделия из него

Для начала, давайте разберемся, что же представляет собой материал? Каков его состав и основные свойства? И какими могут быть изделия из керамзитобетона, в соответствии с ГОСТ?

Состав изделий и требования к используемым материалам

Стандартным составом раствора для будущих блоков является смесь из песка, воды, цемента и керамзита, который выступает в роли пористого заполнителя.

Состав керамзитоблока

Помимо него могут применяться щебень, песок, алгопорит, шлаковый или пемзовый гравий. Пропорции материалов, а также их точное содержание, напрямую оказывают влияние на будущие показатели свойств и качеств изделий, а потому к ним предъявляются особые требования.

ГОСТ на блоки из керамзитобетона содержит следующую информацию по этому поводу:

  1. Раствор керамзитобетона, который используется для производства блоков, должен обладать соответствием с требованиями ГОСТ 25820.
  2. Цементы применяются в качестве основного вяжущего.
  3. Заполнители могут быть следующими: керамзитовый песок и гравий (ГОСТ 32496), зола-унос (ГОСТ 25818), шлаковый песок черной и цветной металлургии (ГОСТ 5578), песок горных пород (ГОСТ 22263), песок перлитовый (ГОСТ 10832), золошлаковая смесь (ГОСТ 25592).
  4. При изготовлении колерованных изделий, могут быть применены красители;
  5. Вода должна быть очищенной и соответствовать требованиям технической документации (ГОСТ 23732).
  6. Удельную активность радионуклидов контролируют при помощи ГОСТ 30108.

Основные требования к техническим характеристикам

А теперь, давайте воспользуемся таблицей и проанализируем основные технические, физические и эксплуатационные качества материала.

ГОСТ на изделия: основной набор свойств и качеств:

ТеплопроводностьКоэффициент теплопроводности составляет от 0,14 до 0,45 Вт*м С. Это – достаточно неплохой показатель.

В сравнении, разумеется, с газо- или пенобетоном, керамзитобетон в этом значительно уступает, однако данный факт с лихвой компенсируется повышенными показателями плотности.

На заметку! Стоит учитывать, что увлаженные изделия, пребывающие в эксплуатационных условиях, характеризуются более высокими числовыми значениями. Влажность напрямую влияет на коэффициент теплопроводности, значительно повышая его. И это касается не только керамзитобетона, но и других материалов в том числе.

МорозостойкостьМорозостойкость определяет количество циклов повременного замораживания и оттаивания, которое может выдержать изделие.

Если говорить про керамзитоблоки, ГОСТ 33126-2014 установлен минимальный порог морозостойкости изделий, равный 15 циклам. Максимальное значение – 500 циклов.

Стеновые блоки, по утверждениям производителей, характеризуются числовым значением в 150-200 циклов.

Для большинства стеновых материалов это – весьма завидный показатель.

ПлотностьПоказатель средней плотности варьируется в промежутке от 400 до 2000. В соответствии с ним и сферой применения, изделия имеют классификацию, которую мы рассмотрим чуть позже.

Числовое значение – весьма высоко.

Обратите внимание! Это – единственный материал, принадлежащий к классу легких бетонов, который позволительно использовать при устройстве фундаментов.

УсадкаУсадка не свойственна вовсе. Это достаточно весомый плюс.
ГигроскопичностьСпособность к поглощению влаги характеризует материал. Он нуждается в защите от ее воздействия. В противном случае, изделие будет подвергнуто постепенному снижению качеств и скорейшему разрушению.
ЭкологичностьСостав сырья не предусматривает наличия вредных веществ, поэтому с уверенностью можно сказать, что материал – экологичный.
ПожароустойчивостьИзделия не горят
ПрочностьПрочность равна от 50 до 150 кг/см2.
ДолговечностьПри соблюдении всех технических норм по строительству и отделке, керамзитобетон может прослужить поразительно долго. Долговечность может достигать и 200, и 300 лет.

Классификация и область применения материала

А теперь давайте рассмотрим, каких же видов бывают блоки и на чем базируются классификации изделий.

В соответствии с типом продукции выпускаемой из керамзитобетона, выделяют следующие изделия:

  • Стеновые блоки. Обладают изделия стандартными размерами. Используются при возведении стен, перегородок. Блоки наименьшей плотности применяются в качестве теплоизоляционного материала.

Строение, возведенное из стенового блока

  • Фундаментные блоки. Особенно прочные изделия. Применяются при устройстве фундаментов.

Фундаментный блок

  • Вентиляционные изделия. Узкоспециализированные, имеют отверстия для проводки различных инженерных коммуникаций.

Вентиляционное изделие

Если говорить про керамзитобетон в общем, то выпускаются также плиты и панели, однако к категории блочных изделий их отнести нельзя.

В зависимости от средней плотности блоков, керамзитобетонные изделия могут быть:

  • Теплоизоляционными. Обладают наименьшим показателем плотности, равном до 500 кг/м3. Никаких существенных нагрузок выдержать они не могут, поэтому пригодны лишь как материал, служащий для утепления конструкций.

Теплоизоляционный керамзитобетон

  • Конструкционно-теплоизоляционными. Наиболее популярный вид продукции. Активно используется при сооружении зданий.

Применяется при возведении стен и перегородок. Обладает плотностью, равной 500-900 кг/м3.

Конструкционно-теплоизоляционный керамзитобетон

  • Конструкционными. Характеризуются высокими показателями плотности, достигающими вплоть до 1600 кг/м3. Используются при строительстве конструкций на которые оказывается серьезная нагрузка. Например, несущие стены.

Конструкционный блок

Также стоит обратить внимание на то, что в ассортименте керамзитоблока имеются и изделия, обладающие плотностью до 2000 кг/м3. Структура изделия, предопределила появление еще одной классификации.

В зависимости от нее, блоки бывают:

  • Полнотелые. Более тяжеловесные и прочные изделия. Могут использоваться, например, при строительстве внешних стен.

Полнотелый блок

  • Пустотелые. Легкие и менее прочные блоки. Характеризуются пониженным коэффициентом теплопроводности.

Пустоты могут быть как несквозными, так и сквозными. Количество также может разниться, стандартом является – 4-8 штук.

Пустотелые изделия

В зависимости от назначения, изделия бывают:

  • Рядовые. Применяются при возведении стен. Требуют последующей отделки как наружной, так и внутренней.

Рядовые изделия

  • Лицевые. Могут иметь 1 или 2 облицованные стороны.

Лицевые изделия

Фактура у керамзитобетонных изделий также может быть различной.

В ассортименте имеются:

  • Изделия с колотой фактурой;

Колотая фактура керамзитоблока

  • Гладкие блоки;

Керамзитоблок с гладкой поверхностью

Керамзитоблок со шлифованной поверхностью

Рифленое изделие

Торцы могут быть ровными, а также иметь пазы, шпунт и гребень.

Блоки: размеры стандартных стеновых изделий с паз-гребнем

А теперь давайте рассмотрим, какие размеры блоков могут быть в соответствии с ГОСТ.

Блоки керамзитобетонные и их размеры в соответствии с ГОСТ 6133-99:

Керамзитоблоки для наружных стен: размеры изделий.ВысотаДлинаШирина
138288288
138288138
188390190
188290190
188190190
18890190
Керамзитоблоки для перегородок: размеры изделий.18859090
18839090
18819090

Вышеуказанные параметры отражают стандартный размер. По согласованию с потребителем, размер блока керамзитобетонного может быть и другим, не соответствующим показаниям, указанным в таблице 2.

Керамзитобетонные изделия размеры ГОСТ

Ни для кого не секрет, что изделия могут характеризоваться наличием определенных отклонений от стандартов. ГОСТ предусмотрен и этот факт. Рассмотрим при помощи таблицы допустимые нормы.

Керамзитоблок ГОСТ: значения допустимых отклонений от номинальных размеров:

Мелкоштучные керамзитобетонные блоки и их ГОСТ: наименования допустимого отклоненияРядовой блокЛицевой блок
Ширина и длина, мм33
Высота43
Сколы на ребре55
Толщина наружной стенки пустотелого изделия33
Размер раковины, наибольший44
Высота наплыва22
Длинна сколов суммарная, в расчете на 1 м длины5025
Количество отбитостей21
Отклонения от прямолинейности граней и ребер32

Приемка изделий, хранение и транспортировка

Помимо технических и физических свойств стандарт содержит в себе исчерпывающую информацию о правилах приемки продукции, которые мы сейчас и рассмотрим.

Правила приемки

Инструкция по вопросам приемки изделий выглядит следующим образом:

  • Изделия принимаются контрольным органом изготовителя;
  • Приемка производится на основе итогов приемосдаточных и периодических испытаний соответствия продукции стандартам;
  • Максимальной партией считается количество равное 250 м3. За партию принимается набор изделий, изготовленных в одну смену, из одинакового сырья и обладающих аналогичными показателями свойств и качеств;
  • К приемо-сдаточным испытаниям относятся: контроль прочности на сжатие, отпускная прочность, геометрические отклонения изделий, иные внешние характеристики.
  • Периодическим испытаниям подвергаются: показатель морозостойкости, теплопроводности, плотности, звукоизоляции.

Каждая партия изделий должна сопровождаться документом о соответствии (качестве), в котором содержится следующая информация:

  1. Номер партии, дата изготовления и дата выдачи документа;
  2. Номер стандарта;
  3. Количество изделий;
  4. Дата приемки материала;
  5. Прочность на сжатие;
  6. Морозостойкость блоков;
  7. Марка плотности;
  8. Наименование производителя и его адрес;
  9. Условное обозначение изделий.

Требования к перевозке и правила хранения изделий

Перевозка изделий может быть осуществлена любым видом транспорта. При перевозке должны быть соблюдены требования к креплению материала и упаковке. Разгрузочно-погрузочные работы запрещается производить методом навала (сбрасывания).

Хранение осуществляется преимущественно на поддонах установленного образца. Изделия должны быть защищены от воздействий окружающей среды, путем изоляции их при помощи пленки. Хранение может производиться как на закрытой, так и открытой площадке.

Хранение керамзитоблоков, фото

Методы контроля качества материала

Рассмотрим при помощи таблицы сущность методов контроля основных технических, физических и внешних качеств изделий.

Методы контроля в соответствии с ГОСТ:

НаименованиеКраткое описание
Прочность изделийПрочность изделий проверяется путем помещения отобранного образца под пресс, где на него оказывается воздействие, вплоть до разрушения.
ТеплопроводностьКонтроль осуществляется путем создания стационарного потока тепла, направленного на изделие нужной толщины.

При этом производят измерение плотности этого потока, толщины образца и температуры его граней.

МорозостойкостьКонтроль осуществляется путем повременного замораживания и размораживания образца с использованием специализированных камер. После проведения нужного количества циклов производят измерение изменений, касающихся плотности, массы.
Внешние характеристики, такие как насыщенность цвета, фактура.Контролируются путем сравнения с установленными эталонами. Один из которых – чуть бледнее нормы, а второй – чуть ярче. Проверяемый образец не должен быть тусклее и ярче соответственно.
Геометрические отклонения и соответствие установленным размерамИзмеряются при помощи простых инструментов таких как угольник, линейка, штангенциркуль.
ЗвукоизоляцияМетод заключается в измерении давления звука в помещении низкого и высокого уровня с учетом того, что в первом звук поглощается.

Пример протокола испытаний стенового керамзитобетонного блока

Поскольку самостоятельное производство на данный момент весьма распространено, стоит отметить, что данные испытания на проверку качества продукции проводятся для изделий, произведенных в заводских условиях. Кустарное изготовление, в том числе своими руками, в большинстве своем не исполняют требований ГОСТ, в силу отсутствия необходимого набора оборудования, обеспечивающего высокое качество материала.

Поэтому специалисты советуют не пренебрегать правилами и отдавать предпочтение изделиям, прошедшим проверку. Цена на них-выше, однако уверенность в соответствии показателям качеств налицо.

Видео в этой статье «Блоки керамзитобетонные: методы испытаний» содержит полезную информацию о ходе процесса.

Заключение

ГОСТ на керамзитобетонные блоки – стандарт установленного образца, содержащий всю необходимую информацию, касающуюся характеристик, условий перевозки, хранения и методов контроля и отбора образцов. С его помощью любой желающий может ознакомиться со всеми требованиями к материалу, предъявляемыми технической документацией.

Технические характеристики керамзитоблоков

Керамзитоблоки по своим характеристикам находятся между кирпичами и блоками из газобетона/пенобетона. От кирпича они позаимствовали морозостойкость и прочность. С газобетонными блоками они роднятся благодаря низкому уровню теплопроводности, большим размерам и, при этом, небольшому весу. Технологический процесс изготовления блоков из керамзитобетона заключается в добавлении керамзита фракции 5-10 мм в цементне. От фракции керамзита зависят такие характеристики, как прочность и энергосбережение.

Керамзитоблоки используют как при строительстве несущих стен, так и для возведения перегородок. Немаловажным фактором склоняющим к выбору керамзитобетонных блоков является то, что стоимость постройки дома из керамзитоблоков ниже по сравнению с аналогичными материалами. Причиной тому характеристики материала, позволяющие строить стены с меньшей толщиной, да и на фундаменте можно сэкономить, так как такие блоки гораздо легче своих конкурентов, а соответственно снижается и нагрузка на фундамент.

Технические характеристики керамзитоблоков

Керамзитобетонные блоки используются как в малоэтажном строительстве, так и при возведении высотных зданий, ведь их технические характеристики идельно подходят для этих целей. Из этих блоков можно построить здание высотой до 12 этажей. Вес блоков составляет от 10 до 23 кг. Долговечность керамзитоблоков может достигать 60 лет.

Существует два типа блоков, отличающихся размером и формой: стеновые и перегородочные. По стандартам их размеры: стеновые — 188х190х390 мм, перегородочные — 188х90х390 мм. Максимально допустимое отклонение от стандартных габаритов не должно быть больше 10-20 мм. Еще одна из характеристик данного материала — наличие пустот. Пустотелый керазитоблок имеет вертикальные отверстия, снижающие вес блока и повышающие его энергосберегающие качества. Полнотелые блоки более прочные, но и более тяжелые.

Плотность и прочность

Это наиболее важные характеристики керамзитоблоков, так как от плотности зависят энергосберегающие свойства, а от прочности – надежность стен здания.

Плотность керамзитоблока зависит от фракции и меняется в диапазоне от 500 до 1800 кг/м3.

Прочность блоков составляет В3,5–В20, при пересчете на величину статической нагрузки составляет от 35 до 250 кг/см2.

Морозостойкость и огнестойкость

По ГОСТу керамзитоблоки могут иметь несколько марок морозостойкости: F25, F35, F50 и F75. Марки керамзитоблоков указывают на количество циклов заморозки и оттаивания, которое может выдержать блок, полностью пропитанный водой, без потери прочности.

Керамзитоблоки имеют очень хорошую огнестойкость. Они имеют самый высокий класс пожарной безопасности – А1. Это означает, что при воздействии открытого огня стена не разрушается на протяжении 7–10 часов.

Плюсы и минусы керамзитоблоков

Керамзитобетонные блоки имеют плюсы и минусы, как и любой другой строительный материал. Давайте их рассмотрим:

Достоинства:

  1. Влагоустойчивый, что препятствует разрушению даже необработанных стен.
  2. Долговечность, даже в нашем климате.
  3. Высокие показатели прочности. Выдерживает статистическую нагрузку до 250 кг/см2.
  4. Небольшой вес, облегчающий процесс укладки.
  5. Низкая теплопроводность помогает сохранять комфортную температуру в любое время года.
  6. Огнестойкость и отсутствие токсичных продуктов горения.
  7. Хорошо сочетается с различными видами облицовочных материалов.
  8. Отличное соотношение цена-качество.
  9. Самый экологически чистым материал подобного типа, так как в состав входят только цемент, песок и керамзит.

Недостатки:

  1. Плохо переносят ударные и динамические нагрузки.
  2. При распиле образуют неровные края.

Плюсов у керамзитоблоков значительно больше, чем минусов, именно поэтому данный материал настолько популярен и имеет большинство положительных отзывов.

Сравним керамзитоблок с газоблоком и пеноблоком

Газоблоки быстро разрушаются под воздействием воды, чего нельзя сказать о керамзитобетонных блоках. А если же сравнивать пеноблок и керамзитоблок, то первый вдобавок к вышесказанному имеет еще и сильно нарушенную геометрию. Керамзитобетонные блоки, пеноблоки и газобетонные блоки по ряду характеристик достаточно близки. Керамзитоблоки поглощают меньше влаги, а так же превосходят по прочности своих конкурентов. Важной является еще одна характеристика — теплопроводность керамзитоблока, от которой зависит сохранение тепла в помещении.

Характеристики

Керамзитоблоки

Газоблоки

Пеноблоки

Прочность (кг/см2)

25-150

10-40

10-60

Плотность (кг/м3)

500-1800

200-900

450-900

Теплопроводность (Вт/мГрад)

0.15-0.45

0.10-0.30

0.10-0.40

Морозостойкость (циклов)

15-50

15-35

15-50

Водопоглощение (%)

50

95

85

Фотографии домов, построенных из керамзитобетонных блоков

что такое? Плюсы и минусы применения в строиительстве

Содержание статьи

Прямоугольные блоки, изготовленные по специальной технологии с использованием керамзита – популярный строительный материал. Его качества соответствуют требованиям надежности. Керамзитоблоки используются при возведении несущих конструкций, высотных зданий, доступны по цене, применяются в промышленном и частном строительстве, но, как любой материал, имеют свои плюсы и минусы.

Состав смеси для керамзитоблоков

При изготовлении строительного камня в бетонную смесь добавляется фракционный керамзит. Это небольшие глиняные шарики, которые прошли обжиг и приобрели достаточную прочность, сохранив пористость и легкость. Состав бетонной смеси классический: водный раствор цемента и песка с добавлением присадок. Пропорции составляющих могут быть разными, от этого зависит качество получаемого строительного блока.

Кладка керамзитбетона

В строительстве используются:

  • стеновой бетонный камень для кладки однослойных стеновых панелей, а также несущих конструкций;
  • перегородочный шлакоблок для возведения перегородок;
  • теплоизоляционный строительный материал для утепления построек.

Цели использования керамзитоблоков определяют плотность и прочие характеристики материала.

Положительные качества керамзитоблоков

Блоки из керамзита конкурируют в частном малоэтажном строительстве с традиционными материалами: кирпичом, песчаником, камнем. Плюсы и минусы других материалов склоняют застройщиков делать выбор в пользу керамзитобетонных блоков, которые обладают неоспоримыми преимуществами.

Прочность и долговечность

Эти качества строительного камня самые востребованные. Прочность структуры напрямую связана с технологией изготовления. Использование добавок для приготовления бетонной смеси, цемент, наполнитель в виде керамзита образуют состав, позволяющий получать легкий, прочный камень.

Сравнительная характеристика каменных блоков из различных материалов:

СвойствоЗначение
КерамзитоблокГазосиликатные блокиПенобетонные блокиШлакоблок
Объемный вес 700 -1500 кг/м3400 — 600 кг/м³400 -600 кг/м32000 кг/м3
 Прочность Высокопрочный материал (уступает только бетону без наполнителей)Высокая.Склонны к ускоренному разрушению при повышенной влажности

9-13 кг/см2

марки D 400 — 500

Могут крошиться, но не образуют трещин.
 Морозостойкость50 циклов50 циклов и более50 циклов и более50 циклов и более
 Усадка0 % мм/м0,6 – 3%0,01 — 0,02%0 % мм/м
Водопоглощение50 %25 – 30%3,8 — 6,6%До 9%

Указанные свойства позволяют применять керамзитоблок в строительстве отапливаемых и неотапливаемых помещений, жилья, производственных корпусов. В регионах, где отмечается повышенная влажность и резкие перепады температур, этот строительный камень не имеет конкурентов.

Теплоизоляционные свойства

Бетонная смесь имеет высокую теплопроводность, но, когда в состав смеси добавляют пористый материал, а потом изготавливают из нее строительные блоки, то способность удерживать тепло резко возрастает. Керамзитные гранулы – самая популярная добавка для улучшения теплопроводности бетонной смеси.

Плотность керамзита влияет на теплопроводность изделий из керамзитобетонной смеси. Чем плотнее глиняные гранулы, тем прочнее строительный камень, но больше теплопроводность. Чем больше керамзитной добавки в составе смеси, тем теплее кладка.

Стены, как правило, строят из керамзитоблока с максимальными показателями прочности, а облицовку делают из образцов с минимальной теплопроводностью.

Фундамент из керамзитобетонных блоков

Облицовочный керамзитобетонный блок является удобным способом сохранить тепло в постройках.

Не требует высокой квалификации при укладке

Застройщики охотно применяют данный стройматериал благодаря легкости в использовании. Для кладки не нужны профессиональные навыки каменщика. Достаточно внимательности и терпения, чтобы выполнить все предписания и положить стену ровно и аккуратно.

Размеры керамзитоблоков позволяют работать быстро, постройка из этого материала «растет» буквально на глазах.

Пожаробезопасность

Важным эксплуатационным преимуществом является огнестойкость данного материала, показатель которой – больше 4-х часов. Он не горит, не выделяет отравляющих веществ, выдерживает высокие температуры. СанПин 21-01-97 «Пожарная безопасность зданий и сооружений» определяет его, как негорючее вещество (класс НГ).

Экономичность и высокий темп строительства

Использование керамзитобетонных блоков дает возможность строить быстро, уменьшать производственные затраты.

Работать с таким материалом просто и удобно, этому способствует:

  • легкость каменных блоков;
  • разнообразная форма, позволяющая выполнять различную кладку и оптимизировать этот процесс;
  • использование кирпичей различных размеров, указанных в таблице.

Доступная цена

Стоимость керамзита невысока, поэтому строительные бетонные блоки с использованием этого материала в виде наполнителя тоже не отличаются дороговизной. Камень не нуждается в специальных условиях. Поэтому затраты, связанные с его доставкой и хранением, минимальны. Рассчитать точное количество материала для строительства или утепления стен несложно. Нет необходимости приобретать лишние кубометры. Можно сделать идеальный расчет, чтобы не покупать лишние кирпичи, и на этом тоже сэкономить.

Строительство стен из керамзитоблока

Высокая звукоизоляция

Пористость глиняных гранул препятствует распространению звуковых волн. В комнате, которая обложена керамзитом, всегда тихо и спокойно. Шум с улицы или от соседей не сможет преодолеть этот барьер. Керамзитоблоки – прекрасная звукоизоляция.

Недостатки строительного камня из керамзитобетона

Минусов у этого материала немного, но они есть. Их нужно учитывать, чтобы минимизировать возможные отрицательные последствия.

Любая кладка имеет запас прочности. Керамзитоблоки прочны, но динамическая нагрузка способствует их разрушению. Они не выдерживают удары, крошатся. Если стена из этого материала не будет подвергаться таким механическим воздействиям, то прослужит до ста лет. По прочности керамзитоблоки уступают тяжелым бетонам.

К отрицательным характеристикам следует отнести и внешний вид камня, сложность его обработки, например, нарезки. Стеновые блоки выглядят непрезентабельно и требуют финишной отделки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья?

Поделиться с друзьями:

Подпишитесь на новые

Керамзитоблок: плюсы и минусы, характеристики

Керамзитоблок — один из самых распространенных видов строительного камня, получаемый путем полусухого вибропрессования. Основным материалом для его изготовления служит керамзитобетон, который включает в свой состав четыре основных компонента — цемент, керамзит, песок и воду.

Особенности строительного камня

Керамзитоблок является уникальным строительным материалом. Например, он обладает высокой степенью морозостойкости, такой же, как у кирпичной кладки. Сходство с пеноблоками и газобетоном заключается в легкости и удобстве проведения строительных работ. Данный материал также экологически безопасен.

Одним из недостатков керамзитоблока считается, что не всегда возможно установить надежный крепежный узел.

Состав и особенности

Точный состав керамзитоблока можно определить только после измерения его веса. Например, примем средний показатель удельного веса, равный 1500 кг/м?. Обычно в качестве вяжущего материала применяется цемент марки М400 или выше. Он занимает 26,7 % общего объема, т.е. его масса 430 кг. Больше всего в таком материале керамзита — 34 % (510 кг). Песка — практически столько же, сколько цемента — 28 % (420 кг). Воды — всего 9,3 % (120 кг), если задача — получить вязкую смесь умеренной консистенции.

Если необходимо подготовить легкую смесь с удельным весом до 1000 кг/м?, то необходимо снизить содержание цемента и песка, но повысить содержание керамзита.

Особенности подготовки

Отдельная особенность строительного блока из керамзитобетона — внутренняя структура, а именно — наличие пустот внутри камня. Пустотелый блок может иметь как замкнутые пустоты, так и сквозные вертикальные отверстия. Это позволяет снизить удельный вес готового изделия, а следовательно — его стоимость. Полнотелые изделия — дороже, но имеют более высокие прочностные показатели, что дает возможность использовать их для строительства многоэтажных сооружений.

Свойства материала

При выборе конкретного вида строительного материала следует обратить внимание на его свойства. От последних зависит набор задач, которые он позволит решить.

Керамзитоблоки используются для возведения несущих стен и перегородок в жилых и производственных зданиях, поэтому необходимо учитывать следующие параметры:

  • прочность;
  • плотность;
  • износостойкость;
  • звукоизоляционные функции;
  • паропроницаемость;
  • теплопроводность.
Прочность

Один из важнейших показателей, определяющий надежность всей возводимой конструкции. На этот параметр значительно влияет качество материала, из которого изготовлен блок. Цемент должен быть высокого качества, не ниже марки М400.

Процентное соотношение воды, керамзита и песка также должно быть оптимальным: нарушение технологических пропорций компонентов может значительно снизить прочность камня, что приведет к его повреждению и скорому разрушению.

При покупке необходимо проконсультироваться со специалистом. Он поможет выбрать нужную серию блоков для решения конкретных задач. Следует запросить сертификаты соответствия на покупаемую продукцию, гарантирующие, что данные изделия отвечают требованиям нормативных документов.

Паропроницаемость

Выбор керамзитных блоков в качестве основного материала для строительства жилых домов весьма оправдан. Данный материал, по причине своей пористой структуры способен «дышать», создавая оптимальные климатические условия в жилых помещениях. Паропроницаемость кирпича в 2 раза ниже, а древесина и гипсокартон практически идентичны керамзитобетону по этому показателю.

Легко поглощаемая во время сырой погоды влага так же легко отдается обратно в атмосферу в жару. Поэтому находящиеся внутри помещения жильцы чувствуют себя комфортно.

Теплопроводность

Данный материал обладает отличными теплоизоляционными свойствами. Пористая структура обеспечивает равномерный и медленный обмен теплом с окружающей средой. Это позволяет сохранить накопившееся тепло зимой, и защищает здание от перегрева летом.

Отдельно следует подчеркнуть морозостойкость керамзитных блоков. Они выдерживают порядка 50 циклов полного промерзания и оттаивания, в ходе которых прочностные свойства материала меняются очень незначительно. Устойчивость материала позволяет использовать его в суровых климатических условиях.

Прочие свойства

Блоки обладают высокой степенью огнеустойчивости, являются прекрасной звукоизолирующей прослойкой, позволяющей сэкономить на защите стен от проникновения шума. Они практически не гниют, экологически безопасны, способны выдержать несколько десятилетий эксплуатации.

Легкий вес блоков не требует возведения мощного фундамента, а сам материал имеет небольшую усадку, что позволит достаточно редко проводить косметические ремонты. Внушительные габариты камня из керамзитобетона и его невысокая стоимость дают возможность быстро и выгодно возвести каркас будущего здания.

Классификация изделий

Нормативной документацией регламентированы два типоразмера блоков из керамзита. Первый — более крупный, с габаритными размерами 188х190х390 мм — используется для кладки несущих стен. Второй, с габаритными размерами 88х190х390, применяется для создания перегородок внутри сооружений.

Кроме того, керамзитоблок делится на два типа по сфере применения:

  • рядовые (перегородочные) — имеют черновую пористую структуру, используются для кладки стен, которые подлежат последующей отделке облицовочными материалами;
  • лицевые (стеновые) — имеют более гладкую отшлифованную поверхность и используются для кладки стен, для которых в дальнейшем не обязательны отделочные работы.

По наличию пустот внутри материала стеновые изделия бывают полнотелые, двухпустотные, трехпустотные, четырехщелевые, многощелевые, крупноформатные и сквозные. Перегородочные делятся на полнотелые, двухщелевые и многощелевые.

Выводы и советы по выбору

(PDF) Конструкционный бетон с использованием керамзитового заполнителя: обзор

Конструкционный бетон с использованием керамзитового заполнителя: обзор

Индийский журнал науки и технологий

Vol 11 (16) | Апрель 2018 | www.indjst.org

10

8. Ссылки

1. Пайам С., Ли Дж. К., Махмудк Х. М., Мохаммад А. Н..

Сравнение свойств свежего и затвердевшего бетона

с нормальным весом и легким заполнителем. Журнал

Строительная техника.2018; 15: 252–60.

2. Коринальдези В., Морикони Г. Использование синтетических волокон в самоуплотняющемся легком заполнителе

Бетоны. Журнал

строительная техника. 2015; 4: 247–54.

3. Стандартные технические условия ASTM C330-05 для легких заполнителей

для конструкционного бетона. ASTM International,

West Conshohocken, PA. 2005.

4. Маркус Б., Харальд Дж., Хильде Т.К. Влияние добавок на свойства

легких заполнителей, изготовленных из глины.

Цементно-бетонные композиты. 2014. 53. С. 233–238.

Crossref.

5. ASTM C330 / 330M, Стандартные спецификации для легких заполнителей

для конструкционного бетона, ASTM International,

West Conshohocken, PA, US. 2014.

6. Бонаби С.Б., Джалал Кахани Хабушан Дж.К., Кахани Р., Аббас Х.Р.

Изготовление металлической композитной пены с использованием керамических

пористых сфер. Легкий керамзитовый заполнитель методом литья

.Материалы и дизайн. 2014; 64: 310–15. Crossref.

7. Суранени П., Фу Т., Азад В.Дж., Искор О. Б., Вайс Дж. Пуццолановость

однофрезерованных легких заполнителей. Цемент и

Бетонные композиты. 2018; 1 (5): 214–8. Crossref.

8. Сергей AM, Анна Ю. Z, Галина СС. Технология производства

водостойких пористых заполнителей на основе силиката щелочного металла и не вспучивающейся глины

для бетона общего назначения. Цемент

и бетонные композиты.2015; 111: 540–4.

9. Пиоро Л.С., Пиоро Иллинойс. Производство керамзитового агрегата

ворота для легкого бетона из несамовзбухающих глин.

Цементно-бетонные композиты. 2004; 26: 6392–43.

Crossref.

10. Гита С., Рамамурти К. Свойства спеченного низкокалорийного донного зольного заполнителя

с глинистыми связующими. Строительство

и Строительные материалы. 2011; 25: 2002–13. Crossref.

11. Керамзит.2018 12 января. Доступно по адресу:

https://en.wikipedia.org/wiki/Expanded_clay_aggre-

gate.

12. Тот MN, Csaky IB. Роль группы стеатита в процессе вздутия живота

. Ziegel Industries. 1989; 5: 246–50.

13. Мигель С.С., Педро Д.С. Экспериментальная оценка цементных растворов

с материалом с фазовым переходом, введенным через легкий керамзитовый заполнитель

. Строительство и

Строительство. Материалы.2014; 63: 89–96. Crossref.

14. Александра Б., Геогрей П., Ле А.Д., Дузан О., Амар Б.,

Фредерик Р., Жерри Л. Гигротермические свойства блоков

на основе экоагрегатов: экспериментальное и численное исследование

. Строительство и строительство. Материалы. 2016;

125: 279–89. Crossref.

15. Александр М.Г., Миндесс С. Заполнители в бетоне.

Тейлор и Фрэнсис, 270 Мэдисон авеню, Нью-Йорк. 2005.

с.1–448.

16.Cui HZ, Lo TY, Memon SA, Xu W. Влияние легких заполнителей

на механические свойства и хрупкость бетона из легких заполнителей

. Констр. Строить. Матер. 2012;

35: 149–58. Crossref.

17. Чжан М.Х., Гьорв Э., Микроструктура межфазной зоны

между легким заполнителем и цементным тестом. Цемент

и бетонные исследования. 1990; 20 (4): 610–8. Crossref.

18. Аризон О, Килинч К., Карасу Б., Кая Дж., Арслан Дж., Тункан А,

Тункан М., Киврак С., Коркут М., Киврак С.A Предварительное исследование

свойств керамзитового заполнителя

. Журнал Австралийского керамического общества. 2008;

44 (1): 23–30.

19. Real S, Gomes MG, Rodrigues AM, Bogas JA. Вклад

конструкционного бетона из легкого заполнителя в снижение эффекта тепловых мостов в зданиях. Строительство

и Строительные материалы. 2016; 121: 460–70. Crossref.

20. Губертова Б., Хела Р.Прочность легкого пенобетона

керамзитобетона. Разработка процедур. 2013;

65: 2–6. Crossref.

21. Chiou K, Wang CC, Lin Y. Легкий агрегат

получен из осадка сточных вод и сожженной золы. Управление отходами.

2006; 26 (12): 1453–61. Crossref. PMid: 16431096.

22. Легкий заполнитель для бетона, раствора и раствора

— Часть 1: Легкие заполнители для бетона, раствора.

2002 Май. Доступно по адресу: https: // shop.bsigroup.com/Prod

uctDetail /? pid = 0000000000301187942002.

23. Свами Р.Н., Ламберт Г.Х. Микроструктура агрегатов Lytag TM

. Международный журнал цементных композитов

и легких бетонов. 1981; 3 (4): 273–85. Crossref.

24. Уильям Д.А., Грегор Дж. Г., Клаус П. Термомеханические испытания на месте

Испытания геополимерных бетонов из жидкой золы, изготовленных из кварца

и керамзитовых заполнителей. Цемент и бетон

исследования.2016; 80: 33–43. Crossref.

25. Богас Дж. А., Брито Дж. Д., Кабасо Дж. Долговременное поведение бетона

крит, произведенный из переработанного легкого керамзита

бетона-заполнителя. Строительные и строительные материалы.

2014; 65: 470–9. Crossref.

26. Аслама М., Шааг П., Ализаде Н.М., Джумаата М.З.

Производство высокопрочного легкого заполнителя кон-

крит с использованием смешанных крупнозернистых легких заполнителей. Журнал

строительной техники.2017; 13: 53–62.

27. Сергей А.М., Александр ГЦ, Галина С.С., Роман В.Д. Некоторые аспекты

разработки и применения силикатных

вспененных заполнителей в легких бетонных конструкциях.

Разработка процедур. 2016; 153: 599–603. Crossref.

Блоки ECA, LECA | Легкие бетонные строительные блоки

  • Дом
  • Агрегат вспученной глины
  • Строительные блоки ECA ®

Керамзитовый заполнитель (ECA ® ) Легкий строительный кирпич

БЛОКИ из вспененного глиняного заполнителя (ECA ®) — это блоки для каменной кладки, изготовленные с использованием заполнителя из вспененной глины (ECA ® ) , золы уноса класса F и цемента .Применяются для ненесущей кладки стен.

После применения высокопроизводительной инновационной технологии в процессе производства и постотверждения, БЛОКИ из вспененного глиняного заполнителя (ECA ®) BLOCKS приобретают превосходные свойства материала.

Он также предлагает без уменьшенной усадки и превосходную огнестойкость и химическую стойкость , добавляя к нескольким преимуществам, включая долговечность, универсальность, скорость и простоту использования, а также экономичность и экологические соображения.

Керамзитовый заполнитель (ECA ® ) Строительный блок доступен в 2 размерах

Размеры: 600 X 200 X 225 мм (дюймы: 24 X 8 X 9 дюймов) — 1 CMT: 36 блоков по 9 дюймов
600 X 200 X 100 мм (дюймы: 24 дюйма X 8 дюймов X 4 дюйма) — 1 CMT: 83 Количество блоков по 4 дюйма

Мы часто видим клиентов, у которых возникают вопросы перед окончательной доработкой строительных материалов или при поиске поставщиков легких бетонных блоков.Общие вопросы, которые возникают при выборе легких бетонных блоков для их строительства: сколько стоят бетонные блоки? Или каков размер бетонного строительного блока? Есть ли в их районе поставщики блоков из легкого бетона? Или есть разница между шлакоблоком и бетонным блоком? Или есть в продаже поставщик дешевых бетонных блоков?

Долгое ожидание окончено в поисках прочных легких бетонных блоков в Индии.Решением для всех являются твердые строительные блоки из керамзитового заполнителя.

Впервые в Индии предлагаются бетонные строительные блоки, которые являются не только легкими бетонными блоками, но также входят в премиальный сегмент массивных строительных блоков. Они производятся с использованием керамзитового заполнителя.

Блоки из керамзитового наполнителя

впервые производятся в Индии. Они также известны во всем мире как блоки Leca или блоки из легкого керамзита.Эти блоки Leca или твердые строительные блоки из керамзитового керамзита используют особый тип керамзитового заполнителя, который образуется путем обжига природной горной глины при 1200 ° C во вращающейся печи. В результате получается жесткая сотовая структура из соединяющихся пустот. Эти бетонные строительные блоки, изготовленные из керамзитового заполнителя, улучшают внутреннее отверждение и повышают прочность на сжатие, возникающую с течением времени. Блоки ECA ® или блоки Leca, производимые в Индии, являются лучшим выбором для строительства, которое предлагает гибкость конструкции в сочетании с превосходными тепловыми и акустическими свойствами.Их легко забивать гвоздями, сверлить, формировать и скалывать, и, в отличие от других обычных строительных блоков, на них не образуются трещины штукатурки из-за сильного сцепления с обычным цементным раствором.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Плотность в сухом состоянии 600-750 кг / м3 (среднее значение = 700 кг / м3)
Усадка при высыхании 0.005%
Прочность на сжатие от 3,5 до 5,0 Н / мм2 (МПа)
Прочность на изгиб 1,05 Н / мм2
Теплопроводность 0,14-0,18 Вт / мк
Индекс звукоизоляции До 46 дБ для стены толщиной 100 мм и до 52 дБ для стены толщиной 230 мм

Пористость керамзита, полученного с добавлением ила пивоваренной промышленности

  • 1.

    Каяли, О., Чжу, Б.: Коррозия арматуры, вызванная хлоридом, в легковесном бетоне с высокой прочностью из золы уноса. Constr Build Mater 19 , 327–336 (2005)

    Статья Google Scholar

  • 2.

    Чой, Й.-М., Мун, Д.-Дж., Чанг, Дж.-С., Чо, С.-К .: Влияние заполнителя отработанных ПЭТ-бутылок на свойства бетона. Cem Concr Res 35 , 776–781 (2005)

    Статья Google Scholar

  • 3.

    Пирс, Э., Блэквелл, К.: Потенциал использованной резины для шин в качестве легкого заполнителя в текучем заполнителе. Управление отходами 23 , 197–208 (2003)

    Статья Google Scholar

  • 4.

    Pinto, S .: Valorização de resíduos da indústria da celulose na produção de agregados leve. Дипломная работа. Universidade de Aveiro (2005)

  • 5.

    Cheeseman, C .: Proceedings of the Second International Slag Valorization Symposium, Левен, Бельгия, 18–20 апреля 2011 г.

  • 6.

    Wang, H.Y., Hsiao, D.H., Wang, S.Y .: Comput Concr 10 (2), 95–104 (2012)

    MathSciNet Статья Google Scholar

  • 7.

    Монтейро, Массачусетс, Раупп-Перейра, Ф., Феррейра, В.М., Лабринча, Дж. А., Донди, М.: Конференция по использованию переработанных материалов в зданиях и сооружениях, Барселона, Испания, 9–11 ноября 2004

  • 8.

    Cheeseman, CR, Makinde, A., Bethanis, S .: Resour Conserv Recycl 43 , 147–162 (2005)

    Статья Google Scholar

  • 9.

    Quijorna, N., Coz, A., Andrés, C., Cheeseman, R .: Resour Conserv Recycl 65 , 1–10 (2012)

    Статья Google Scholar

  • 10.

    Мендес, М.Р., Роча, Дж. К., Риелла, Х. К.: Производство легких заполнителей путем пиро-расширения остатков. В: Материалы 17-й Международной конференции по технологии и обращению с твердыми отходами, стр. 318–325. Филадельфия, США (2001)

  • 11.

    Van der Sloot, H.А., Уэйнрайт, П.Дж., Крессвелл, Д.Дж.Ф .: Производство синтетического заполнителя из карьерных отходов с использованием вращающейся печи инновационного типа. Waste Manag Res 20 , 279–289 (2002)

    Статья Google Scholar

  • 12.

    Тай, Дж. Х., Шоу, К. Ю., Хонг, С. Я .: Повторное использование промышленного осадка в качестве строительных заполнителей. Water Sci Tech 44 (10), 269–273 (2001)

    Google Scholar

  • 13.

    Weinecke, M.H., Faulkner, B.P .: Производство легкого заполнителя из отходов. Горное дело 54 (11), 39–43 (2002)

    Google Scholar

  • 14.

    Пинто, С. Розенбом, К., Мачадо, Л., Коррейя, A.M.S., Лабринча, Дж. А., Феррейра, В. М.: Переработка промышленных отходов в производстве легких заполнителей. В: Труды REWAS, Мадрид, Испания, 26–29 сентября 2004 г.

  • 15.

    Балгаранова Дж., Петров, А., Павлова, Л., Александрова, Э .: Утилизация отходов коксохимического производства и осадка сточных вод в качестве добавок в кирпич-глину. Вода, загрязнение воздуха и почвы 150 , 103–111 (2003). http://dx.doi.org/10.1023/A:10261523

  • 16.

    Залыгина О.С., Баранцева С.Е .: Использование избыточного активного ила городских очистных сооружений в производстве строительной керамики. Стеклокерамика 55 , 164–167 (1998)

    Артикул Google Scholar

  • 17.

    Грегорова, Э., Пабст, В., Богааенко, И.: Характеристика различных типов крахмала для их применения в обработке керамики. J Eur Ceram Soc 26 , 1301–1309 (2006)

    Артикул Google Scholar

  • 18.

    Демир И .: Влияние добавок органических остатков на технологические свойства глиняного кирпича. Управление отходами 28 , 622–627 (2008)

    Статья Google Scholar

  • 19.

    Вибуш Б., Сейфрид К.Ф .: Использование золы осадка сточных вод в кирпичной и черепичной промышленности. Water Sci Technol 36 (11), 251–258 (1997)

    Статья Google Scholar

  • 20.

    Джордан, М.М., Альмендро-Кандель, М.Б., Ромеро, М., Ринкон, Дж. М.: Применение осадка сточных вод в производстве корпусов керамической плитки. Appl Clay Sci 30 (34), 219–224 (2005)

    Статья Google Scholar

  • 21.

    Андерсон, М., Скеррат, Р.Г., Томас, Дж. П., Клэй, С.Д .: Практический пример использования золы осадка мусоросжигательной установки с псевдоожиженным слоем в качестве частичной замены при производстве кирпича Water Sci Technol 34 (37), 507–515 (1996)

    Статья Google Scholar

  • 22.

    Монзо, Дж., Пайя, Дж., Боррачеро, М.В., Корколес, А .: Использование примесей золы осадка сточных вод (SSA) и цемента в строительных растворах. Cem Concr Res 26 (9), 1389–1398 (1996)

    Статья Google Scholar

  • 23.

    Ханбилварди, Р., Афшари, С .: Зола шлама как мелкий заполнитель для бетонной смеси. J Environ Eng ASCE 121 (9), 633–638 (1995)

    Статья Google Scholar

  • 24.

    Бхатти, Дж. И., Рид, К. Дж .: Прочность на сжатие строительных растворов для золы ила. ACI Mater J 86 (4), 394–400 (1989)

    Google Scholar

  • 25.

    Pan, S.H., Tseng, D.H., Lee, C.Ч., Ли, Ч .: Влияние крупности золы осадка сточных вод на свойства раствора. Cem Concr Res 33 (11), 1749–1754 (2003)

    Статья Google Scholar

  • 26.

    Кусидо, Дж. А., Сориано, К.: Повышение качества гранул из осадка городских очистных сооружений в легкой глиняной керамике. Управление отходами 31 (6), 1372–1380 (2011)

    Статья Google Scholar

  • 27.

    Ван, X., Джин, Y., Wang, Z., Mahar, R.B., Nie, Y .: Исследование характеристик и механизмов спекания высушенного осадка сточных вод. J Hazard Mater 160 (2–3), 489–494 (2008)

    Статья Google Scholar

  • 28.

    Qui, Y., Yue, Q., Han, S., Yue, M., Gao, B., Yu, H., Shao, T .: Подготовка и механизм сверхлегкой керамики, произведенной из осадок сточных вод. J Hazard Mater 176 , 76–84 (2010)

    Статья Google Scholar

  • 29.

    Чен, Х.Дж., Ян, М.Д., Тан, Ч.В., Ван, С.Ю .: Производство синтетического легкого заполнителя из отложений коллектора. Constr Build Mater 28 (1), 387–394 (2012)

    Статья Google Scholar

  • 30.

    Йордан, М.М., Мартин-Мартин, Дж. Д., Санфелиу, Т., Гомес-Гра, Д., Фуэнте, К.: минералогические превращения пермо-триасовых глин, используемых в производстве керамических плиток, при обжиге. Appl Clay Sci 44 (12), 173–179 (2009)

    Статья Google Scholar

  • 31.

    Элиас, X .: Optimización de los Procesos Cerámicos Industriales, La cerámica como tecnología de valorización de резидуос Медельин (2000). http://www.cnpml.org/html/archivos/Ponencias (2001)

  • 32.

    Мекки, Х., Андерсон, М., Бензина, М., Аммар, Э .: Повышение ценности сточных вод оливковой мельницы с помощью его включение в строительный кирпич. J Hazard Mater 158 , 308–315 (2008)

    Статья Google Scholar

  • 33.

    Коломер, Ф.Дж., Гальярдо, А., Роблес, Ф., Бовеа, Д., Эррера, Л.: Opciones de valorización de lodos de distintas estaciones depuradoras de aguas резидуали. Инж 14 (3), 177–190 (2010)

    Google Scholar

  • 34.

    UNE 32006, Твердое минеральное топливо. Определение высшей теплотворной способности автоматическим калориметром (1995)

  • 35.

    NPR-CENT / TS 15359 EN. Твердое рекуперированное топливо — характеристики и классы

  • 36.

    UNE 67–027, Кирпичи обожженные глиняные. Определение водопоглощения (1984)

  • 37.

    Red Interinstitucional de Tecnologías Limpias. Grupo de Calculo UIS-IDEAM. http://www.Tecnologiaslimpias.org/html/central/369102/369102_rn.htm

  • 38.

    Хартман, М., Свобода, К., Погорели, М., Трнка, О.: Сжигание высушенных осадков сточных вод. в реакторе с псевдоожиженным слоем. Ind Eng Chem Res 44 , 3432–3441 (2005)

    Статья Google Scholar

  • 39.

    Colina, R., Primera, J., Plaza, E., Huerta, L .: Extracción con microondas de la materia orgánica presente en un gel de SiO 2 sintetizados por la vía de los atranos. Ciencia 19 (3), 223–230 (2011)

    Google Scholar

  • 40.

    Неймарк, А.В., Равикович, П.И .: Капиллярная конденсация в MMS и характеристика пористой структуры. Микропористый мезопористый материал 697 , 44–45 (2001)

    Google Scholar

  • Керамзитовый заполнитель (ECA), теплоизоляция, легкий вес

    • Дом
    • Стены
    • Теплоизоляция

    Материалы, используемые при строительстве, имеют прямое влияние на общую стабильную массу здания.Таким образом, строительные материалы должны обеспечивать оптимальные необходимые параметры тепло- и звукоизоляции здания. В настоящее время стандарты и правила определяют требуемые значения для теплоизоляции. И эти стандарты, выражая прямую связь между теплопроводностью строительных материалов или их составных форм, обеспечивают тепловой комфорт зданий. Все эти относительные значения меняются в зависимости от структурных свойств материалов и удельной теплоемкости.

    Керамзитовый наполнитель (ECA) представляет собой круглую гранулированную структуру, полученную путем обжига натуральной глины при температуре 1200 ° C.В результате получается жесткая сотовая структура из соединяющихся пустот внутри заполнителя, обеспечивающая хорошие изоляционные свойства.

    Стены и панели из керамзитовой глины обладают высоким термическим сопротивлением (до 12 раз более изоляционным, чем обычный бетон) благодаря легкому заполнителю из керамзитовой глины, который имеет пористую внутреннюю структуру и оптимизированный состав (геометрию), что позволяет построить одностворчатые стены с утеплителем или без него, в зависимости от климатической зоны.

    Заполнитель из вспененной глины (ECA) приводит к снижению плотности бетона. Благодаря своей легкости и структуре материал обладает хорошей тепло- и звукоизоляцией, а также огнестойкостью. Поэтому он используется в основном при строительстве подвальных стен, полов, внутренних перегородок и потолков.

    Использование стеновых элементов из керамзита обеспечивает высокое тепловое сопротивление стенам за счет улучшения значений U и меньшего теплового моста; повышение энергоэффективности здания и, как следствие, сокращение выбросов CO2.

    Помимо значения U, следует также учитывать тепловую инерцию и массу ограждающих конструкций. Это представляет собой способность материала накапливать тепло. Конструкция с высокой тепловой инерцией может обеспечить лучший комфорт (обогрев и охлаждение), затрачивая меньше энергии. Элементы из керамзита имеют высокую тепловую инерцию и массу по сравнению с легкими решениями, такими как деревянные стены и т. Д., И его использование в зданиях обычно приводит к снижению потребности в энергии как для отопления, так и для охлаждения.

    Согласно отчетам об испытаниях, использование керамзитового наполнителя (ECA) на крыше может легко снизить температуру в помещении до 11 градусов по Цельсию, что составляет около 52 градусов по Фаренгейту, что позволяет использовать систему кондиционирования воздуха или систему охлаждения воздуха даже в разгар лета. избыточный.

    Влияние летучей золы, золы и легкого керамзитобетона на бетон

    Разработка новых методов укрепления бетона ведется десятилетиями.Развивающиеся страны, такие как Индия, используют обширные армированные строительные материалы, такие как летучая зола, зольный остаток и другие ингредиенты при строительстве RCC. В строительной отрасли большое внимание уделяется использованию летучей золы и зольного остатка в качестве заменителя цемента и мелкого заполнителя. Кроме того, для облегчения веса бетона был введен легкий керамзит вместо крупного заполнителя. В данной статье представлены результаты работ, выполненных в режиме реального времени для формирования легкого бетона, состоящего из летучей золы, зольного остатка и легкого керамзитового заполнителя в качестве минеральных добавок.Экспериментальные исследования бетонной смеси М 20 проводят путем замены цемента летучей золой, мелкого заполнителя шлаком и крупного заполнителя легким керамзитом из расчета 5%, 10%, 15%, 20%, 25 %, 30% и 35% в каждой смеси, их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7, 28 и 56 дней, а прочность на изгиб обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки. замены бетона по прочности на сжатие и раздельному разрыву.

    1. Введение

    Бетон с высокими эксплуатационными характеристиками указывает на исключительную форму бетона, наделенную удивительной производительностью и прочностью, которые не требуют периодической оценки на регулярной основе с использованием традиционных материалов и стандартных методов смешивания, укладки и отверждения [1] . Обычный портландцемент (OPC) занял незавидную и непобедимую позицию в качестве важного материала в производстве бетона и тщательно выполняет свои задуманные обязательства в качестве необычного связующего для соединения всех собранных материалов.Для достижения этой цели остро необходимо сжигание гигантской меры топлива и гниение известняка [2]. Некоторые марки обычного портландцемента (OPC) доступны по индивидуальному заказу, чтобы соответствовать классификации конкретного национального кода. В этом отношении Бюро индийских стандартов (BIS) прекрасно справляется с задачей классификации трех отдельных классов OPC, например, 33, 43 и 53, которые хронически широко использовались в строительной отрасли [3]. Прочность, стойкость и различные характеристики бетона зависят от свойств его ингредиентов, пропорции смеси, стратегии уплотнения и различных мер контроля при укладке, уплотнении и отверждении [4].Бетон, содержащий отходы, может способствовать управляемому качеству строительства и способствовать развитию области гражданского строительства за счет использования промышленных отходов, минимизации использования природных ресурсов и производства более эффективных материалов [5]. В портландцементном бетоне используется летучая зола, когда характеристики потери при возгорании (LOI) находятся в пределах 6%. Летучая зола содержит кристаллические и аморфные компоненты вместе с несгоревшим углеродом. Он охватывает различные размеры несгоревшего углерода, который может достигать 17% [6].Летучая зола часто упоминается как прудовая зола, и в течение длительного времени вода может стекать. Обе методики позволяют сбрасывать летучую золу на свалки в открытом грунте. Химический состав летучей золы по-прежнему изменяется в зависимости от типа угля, используемого для сжигания, условий горения и производительности откачки устройства контроля загрязнения воздуха [7]. Для воздействия летучей золы и замены всего вытоптанного песчаника на бетонные и мраморные разбрасыватели использовались сборные бетонные блокирующие квадраты [8].Принимая во внимание мощность бетонных зданий, современная бетонная методология устанавливает экстраординарные меры для снижения температуры на высшем уровне и разницы температур путем использования материалов с минимальным уровнем выделения тепла, чтобы избежать или снова снизить тепловое расщепление, что приведет к предотвращению теплового расщепления. разложение бетона [9]. Производство бетона осуществляется при чрезвычайно высоких и незаметно низких температурах бетона, чтобы понять удобоукладываемость и качество сжатия [10].Статистическая модель и кинетические свойства изгиба, разрыва при растяжении, а также модуль гибкости по устойчивости к сжатию проистекают из неоправданного коэффициента корреляции [11]. Известно, что бетон, созданный из мельчайших общих и превосходных пустот, обогащен блестящими знаниями в области исключения материалов [12]. В Индии подразделение энергетики, сосредоточенное на угольных тепловых электростанциях, производит колоссальное количество летучей золы, оцениваемое примерно в 11 крор тонн ежегодно.Потребление летучей золы оценивается примерно в 30% для обеспечения различных инженерных свойств [13]. При зажигании угля для выработки энергии в котле выделяется около 80% несгоревшего материала или золы, которая уносится с дымовыми газами и улавливается и утилизируется в виде летучей золы. Остаточные 20% золы помогают высушить базовую золу [14]. В момент сжигания пылевидного угля в котле с сухим днищем от 80 до 90% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы.Остаточные 10–20% золы предназначены для сушки шлаков, песка, материала, который собирается в заполненных водой контейнерах у основания печи [15]. Зольный шлак в бетоне создается методом фракционного, почти агрегатного и тотального замещения мелкозернистых заполнителей в бетоне [16]. С другой стороны, из легкого бетона неудобно относить корпус к уникальной категории материалов. Однако у LWC (легкого бетона) четкие края, и падение общих расходов, вызванное более низкими статическими нагрузками, постоянно перекрывается повышенными производственными затратами [17].Фактически, легкий бетон стал приятным фаворитом по сравнению со стандартным бетоном с точки зрения множества непревзойденных характеристик. Снижение собственного веса обычно приводит к сокращению производственных затрат [18]. Самоуплотняющийся бетон на заполнителях с нормальным весом (SCNC) должен стать фаворитом при разработке. Рост затрат на строительство SCLC положительно согласуется с ростом расходов на SCNC [19]. Собственный вес бетона из легкого заполнителя оценивается примерно на 15% ~ 30% легче, чем у стандартного бетона, что в достаточной степени соответствует механическим характеристикам, которые требуются для дорожной опоры при указанной степени плотности [20].Растущее использование легкого бетона (LWC) привело к необходимости производства искусственного легкого бетона в целом, что может быть выполнено с помощью методологии сборки холодного склеивания. Производство искусственных легких заполнителей методом холодного склеивания требует гораздо меньших энергозатрат по сравнению со спеканием [21]. Легкий бетон, изготовленный из натуральных или искусственных легких заполнителей, доступен во многих частях мира. Его можно использовать как часть создания бетона с широким диапазоном удельного веса и подходящего качества для различных применений [22].Бетон из легких заполнителей повышает его эффективность, предотвращая близлежащие повреждения, вызванные баллистической нагрузкой. Более низкий модуль упругости и более высокий предел деформации при растяжении обеспечивают легкий бетон, противоположный стандартному бетону, с превосходной ударопрочностью [23]. Строители все чаще рекомендуют легкий бетонный материал для достижения приемлемого улучшения из-за его высоких прочностных и термических свойств [24]. Сила адгезии достигается за счет прочности связующего и сцепления агрегатов, которые постоянно сосредоточены вокруг угловатости, ровности и протяженности [25].Легкий керамзитовый заполнитель (LECA), как правило, включает крошечные, легкие, вздутые частицы обожженной глины. Сотни и тысячи крошечных заполненных воздухом углублений успешно наделяют LECA своей безупречной прочностью и теплоизоляционными качествами. Считается, что среднее водопоглощение всего LECA (0–25 мм) связано с 18 процентами объема в состоянии насыщения в течение 3 дней. Обычный портландцемент (OPC) частично заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) по весу 5%, 10%, 15%, 20%, 25 %, 30% и 35% по отдельности.Прочность на сжатие, прочность на разрыв и прочность на изгиб успешно оцениваются с помощью определенных входных значений при одновременном исследовании.

    2. Экспериментальная программа

    Целью работы является оценка прочности на сжатие (CS), прочности на разрыв (STS) и прочности на изгиб (FS) бетона. В этой бетонной смеси обычный портландцемент () заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) массой 5%, 10%, 15%. , 20%, 25%, 30% и 35% соответственно.Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств бетона со всеми материалами. Каждый вес (5%, 10%, 15%, 20%, 25%, 30% или 35%) материала проводил испытание в течение 7 дней, 28 дней и 56 дней. Параметрами, участвующими в оценке характеристик бетона, являются прочность на сжатие (CS), прочность на разрыв (STS) и прочность на изгиб (FS), которые достигаются в ходе экспериментов в реальном времени.Затем определение прочности на изгиб обсуждалось в течение 7, 28 и 56 дней в зависимости от нагрузки для оптимальной дозировки замены по прочности на сжатие и разделенной прочности бетона на растяжение.

    2.1. Используемые материалы

    В этом разделе перечислены названия материалов, использованных в данном исследовании, и их характеристики. Ресурсы: обычный портландцемент, летучая зола, зольный остаток, мелкий заполнитель, крупный заполнитель и легкий керамзитовый заполнитель (LECA).

    2.1.1. Обычный портландцемент

    Обычный портландцемент — это основная форма цемента, где 95% клинкера и 5% гипса, который добавляется в качестве добавки для увеличения времени схватывания цемента до 30 минут или около того.Гипс контролирует время начального схватывания цемента. Если гипс не добавлен, цемент затвердеет, как только вода будет добавлена ​​в цемент. Различные сорта (33, 43, 53) OPC были классифицированы Бюро индийских стандартов (BIS). Его производят в больших количествах по сравнению с другими типами цемента, и он превосходно подходит для использования в общем бетонном строительстве, где отсутствует воздействие сульфатов в почве или грунтовых водах. В этом исследовании цемент () имеет удельный вес 3.15, а также время начального и окончательного схватывания цемента 50 и 450 минут.

    2.1.2. Летучая зола

    Самый распространенный тип угольных печей в электроэнергетике, около 80% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы. Летучая зола была собрана на теплоэлектростанции Тотукуди, Тамил Наду, Индия. Растущая нехватка сырья и острая необходимость защиты окружающей среды от загрязнения подчеркнули важность разработки новых строительных материалов на основе промышленных отходов, образующихся на угольных ТЭС, которые создают неуправляемые проблемы утилизации из-за их потенциального загрязнения окружающей среды. .Поскольку стоимость утилизации летучей золы продолжает расти, стратегии утилизации летучей золы имеют решающее значение с экологической и экономической точек зрения. В качестве исходных материалов используются две новые области переработки угольной летучей золы, как показано на Рисунке 1 (а).

    2.1.3. Нижняя зола

    Оставшиеся 20% несгоревшего материала собираются на дне камеры сгорания в бункере, заполненном водой, и удаляются с помощью водяных струй под высоким давлением в отстойник для обезвоживания и восстанавливаются в виде зольного остатка. как показано на рисунке 1 (b).Зольный остаток угля был получен с тепловой электростанции Thoothukudi, Тамил Наду, Индия. Летучая зола была получена непосредственно из нижней части электрофильтра в мешок из-за ее порошкообразной и пыльной природы, в то время как зола угольного остатка транспортируется со дна котла в зольную емкость в виде жидкой суспензии, где была собрана проба. Зола более легкая и хрупкая, это темно-серый материал с размером зерна, аналогичным песчанику.

    2.1.4. Мелкозернистый заполнитель

    В соответствии с индийскими стандартами природный песок представляет собой форму кремнезема () с максимальным размером частиц 4.75 мм и использовался как мелкий заполнитель. Минимальный размер частиц мелкого заполнителя составляет 0,075 мм. Он образуется при разложении песчаников в результате различных атмосферных воздействий. Мелкозернистый заполнитель предотвращает усадку раствора и бетона. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,67 и 2,3.

    Мелкий заполнитель — это инертный или химически неактивный материал, большая часть которого проходит через сито 4,75 мм и содержит не более 5 процентов более крупного материала. Его можно классифицировать следующим образом: (а) природный песок: мелкий заполнитель, который является результатом естественного разрушения горных пород и отложился ручьями или ледниками; (б) щебневый песок: мелкий заполнитель, полученный при дроблении твердого камня; (в) ) щебень из гравийного песка: мелкий заполнитель, полученный путем измельчения природного гравия.

    Уменьшает пористость конечной массы и значительно увеличивает ее прочность. Обычно в качестве мелкого заполнителя используется натуральный речной песок. Однако там, где природный песок экономически недоступен, в качестве мелкого заполнителя можно использовать мелкий щебень.

    2.1.5. Грубый заполнитель

    Грубый заполнитель состоит из природных материалов, таких как гравий, или является результатом дробления материнской породы, включая природную породу, шлаки, вспученные глины и сланцы (легкие заполнители) и другие одобренные инертные материалы с аналогичными характеристиками. с твердыми, прочными и прочными частицами, соответствующими особым требованиям этого раздела.

    В соответствии с индийскими стандартами измельченный угловой заполнитель проходит через сито IS 20 мм и целиком удерживает сито IS 10 мм. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,60 и 5,95.

    2.1.6. Легкий наполнитель из вспененной глины (LECA)

    LECA показан на Рисунке 1 (c). он обладает сильной устойчивостью к щелочным и кислотным веществам, а pH почти 7 делает его нейтральным в химической реакции с бетоном. Легкость, изоляция, долговечность, неразложимость, структурная стабильность и химическая нейтральность собраны в LECA как лучшем легком заполнителе для полов и кровли.Размер заполнителя составляет 10 мм, а максимальная плотность меньше или равна 480 кг / м 3 . LECA состоит из мелких, прочных, легких и теплоизолирующих частиц обожженной глины. LECA, который является экологически чистым и полностью натуральным продуктом, не поддается разрушению, негорючий и невосприимчив к воздействию сухой, влажной гнили и насекомых. Легкий бетон обычно подразделяется на два типа: газобетон (или пенобетон) и бетон на легких заполнителях.Газобетон имеет очень легкий вес и низкую теплопроводность. Тем не менее, процесс автоклавирования необходим для получения определенного уровня прочности, что требует специального производственного оборудования и потребляет очень много энергии. Напротив, бетон из легких заполнителей, который производится без процесса автоклавирования, имеет более высокую прочность, но показывает более высокую плотность и более низкую теплопроводность бетона.

    2.1.7. Conplast Admixture SP430 (G)

    Conplast SP430 (G) используется там, где требуется высокая степень удобоукладываемости и ее удержания, когда вероятны задержки в транспортировке или укладке, или когда высокие температуры окружающей среды вызывают быстрое снижение осадки.Это облегчает производство высококачественного бетона. Conplast SP430 (G) соответствует тому факту, что он был специально разработан для обеспечения высокого снижения воды до 25% без потери удобоукладываемости или для производства высококачественного бетона с пониженной проницаемостью. Когезия улучшается за счет диспергирования частиц цемента, что сводит к минимуму сегрегацию и улучшает качество поверхности. Оптимальная дозировка лучше всего определяется испытаниями бетонной смеси на объекте, что позволяет измерить эффекты удобоукладываемости, увеличения прочности или уменьшения цемента.Этот тип ингредиентов добавляется в бетон для придания ему определенных улучшенных качеств или для изменения различных физических свойств на его свежей и затвердевшей стадиях. Оптимальная дозировка цемента 0,6–1,5 л / 100 кг. Добавление добавки может улучшить бетон в отношении его прочности, твердости, удобоукладываемости, водостойкости и так далее.

    2.1.8. Структурные характеристики балки

    Структурные характеристики балки — это диаметр верхней арматуры 8 мм, диаметр нижней арматуры 12 мм и хомуты 6 мм (рис. 2).Общая длина балки, используемой для отклонения, составляет 1 метр. Эта спецификация используется в бетонной конструкции, и весь процесс выполняется в спецификации бетона.


    2.1.9. Конструкционный легкий бетон

    Бетон изготавливается из легкого грубого заполнителя. Легкие заполнители обычно требуют смачивания перед использованием для достижения высокой степени насыщения. Основное использование конструкционного легкого бетона — уменьшить статическую нагрузку на бетонную конструкцию.В обычном бетоне различная градация заполнителей влияет на необходимое количество воды. Добавление некоторых мелких заполнителей приводит к увеличению необходимого количества воды. Это увеличение воды снижает прочность бетона, если одновременно не увеличивается количество цемента. Количество крупного заполнителя и его максимальный размер зависят от требуемой удобоукладываемости бетонной смеси. Также в легком бетоне этот результат существует среди градации, требуемого количества воды и полученной прочности бетона, но есть и другие факторы, на которые следует обратить внимание.В большинстве легких заполнителей по мере увеличения размера заполнителя прочность и объемная плотность заполнителя уменьшаются. Использование легкого заполнителя очень большого размера с меньшей прочностью приводит к снижению прочности легкого бетона; поэтому максимальный размер легкого заполнителя должен быть ограничен максимум 25 мм.

    3. Методология

    Пропорция бетонной смеси для марки M 20 была получена на основе рекомендаций согласно индийским стандартным техническим условиям (IS: 456-2000 и IS: 10262-1982).В данном исследовании экспериментальное исследование бетонной смеси M 20 проводится путем замены цемента летучей золой, мелкого заполнителя зольным остатком и крупного заполнителя легким керамзитом (LECA) с долей 5%, 10%, 15%, 20%, 25%, 30% и 35% соответственно. Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств OPC со всеми материалами. Их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28 дней, 56 дней, а прочность на изгиб балки обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки замены по прочности на сжатие и разделенному растяжению. прочность бетона.Как правило, летучая зола и зольный остаток имеют аналогичные физические и химические свойства по сравнению с обычным портландцементом (OPC) и мелким заполнителем, и нет большого количества отклонений для замены друг друга. В этом сценарии легкий керамзитовый заполнитель (LECA) был заменен на крупнозернистый заполнитель на основе его объема, поскольку плотность каждого материала не такая же, как у другого материала, и невозможно заменить его на основе его массы. Для повышения удобоукладываемости бетона добавлен суперпластификатор.

    Соотношение бетонной смеси марки М 20 составило 1: 1,42: 3,3. Контролируемый бетон марки M 20 был изготовлен с заменой 0% летучей золы, зольного остатка и легкого керамзитового заполнителя (LECA) в каждой смеси, а их прочность на сжатие и прочность на разрыв бетона обсуждались для 7, 28, и 56 дней, а прочность бетона на изгиб обсуждалась в течение 7, 28 и 56 дней. В связи с этим замена цемента на зольную пыль, мелкого заполнителя на зольный остаток и крупнозернистого заполнителя на легкий керамзитовый заполнитель (LECA) из расчета 5%, 10%, 15%, 20%, 25%, 30% и Было проведено 35% в каждой смеси, и их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28, дней, 56 дней, а прочность на изгиб балки в течение 7, 28 и 56 дней зависит от оптимальной дозировки замены при сжатии. прочность и разделенная прочность бетона на растяжение.

    Водопоглощение легкого заполнителя со слишком большим количеством пор намного больше, чем у обычных заполнителей (речных заполнителей). Определение степени водопоглощения в агрегатах такого типа затруднено из-за различного количества поглощенной воды. Агрегат LECA производит вращающуюся печь, и из-за его гладкой поверхности водопоглощение заполнителя LECA почти равно или несколько больше, чем у обычного заполнителя; поэтому создание легкой бетонной смеси с заполнителем LECA так же сложно, как и с обычным заполнителем.Для определения количества каждого ингредиента в легкой бетонной смеси (наряду с количеством абсорбированной воды в легких заполнителях, особенно со слишком большими порами с шероховатой и угловатой поверхностью, путем приготовления различных смесей) можно использовать общие методы проектирования: обычная бетонная смесь.

    4. Результаты и обсуждение

    Из таблицы 1 видно, что для контрольных образцов прочность бетона увеличивается с возрастом. При замене 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя LECA прочность на сжатие бетона такая же, как у контрольного бетона.Прочность на растяжение при разделении немного снижается в раннем возрасте и достигает той же прочности, что и у контрольного бетона, через 56 дней.

    2,59 9038 9,73 1427 9038 9,73 1427

    Замена в процентах Сухой вес образца (куб) в кг / м 3 Прочность на сжатие бетона (Н / мм 2 ) Сухой вес образца (цилиндр) в кг Разделенная прочность на разрыв бетона (Н / мм 2 )
    7 дней 28 дней 56 дней 7 дней 28 дней 56 дней

    045 17,96 26,93 26,95 14,35 1,60 2,54 2,57
    5 9,18

    147389
    10 8,89 17,17 25,73 25,76 13,85 1,5 2,32 2,33
    15.54 16,06 24,09 24,11 13,60 1,44 2,17 2,18
    20 8,41 13,41
  • 9027
  • 9027 9027
  • 9027 9027 9027 2,12
  • 25 8,31 11,32 16,96 16,97 13,15 1,35 2,05 2,06
    38 304 10,19 15,26 15,23 12,72 1,31 1,96 1,98
    35 8,13
    8,13
    9027 9,73
    1,92

    Также наблюдается, что при увеличении замены материала прочность на сжатие и прочность на разрыв при разделении снижаются.Сухой вес образцов куба и цилиндра уменьшается по отношению к большему количеству замен материалов.

    4.1. Анализ прочности в зависимости от возраста бетона

    В таблице 1 прочность бетона на сжатие и прочность на разрыв бетона при разделении оцениваются с помощью различных процентных соотношений смешивания, применяемых для образования кубического образца сухого веса и цилиндрического образца сухого веса, соответственно, относительно различных дней.

    Для бетона марки M 20 учитывается следующее предложенное процентное смешивание для различных образцов сухой массы, примененных к кубической форме, для определения прочности на сжатие по отношению к 7, 28 и 56 дням, таким образом, чтобы образец сухой массы применялся к цилиндрической формы по отношению к вышеупомянутым дням для определения прочности на разрыв.Для обоих анализов на упрочнение используется бетон марки М 20 . Из Таблицы 1 заявленные результаты показывают, что процент смешивания увеличивается с уменьшением веса образца, но с точки зрения прочности увеличение процента смешивания, безусловно, снизит достигаемую прочность как на сжатие, так и на разрыв при растяжении, или, с другой стороны, когда смешивание пропорция не участвует в этом (т. е. когда она равна «нулю»), тогда вес образца высок по сравнению с тем, что весит пропорция смешивания, которая смешивается.В обоих случаях для анализа прочности продление дней, безусловно, будет соответствовать прогнозируемой прочности этих анализов, как четко указано в таблице 1.

    На рисунке 3 показан анализ прочности на сжатие куба, который проводится в трех этапах последовательных дней 7, 28 и 56. основанный на различных предложениях смешивания. Достигнутые результаты показывают, что процесс, выполненный для последовательных 56-дневных результатов испытаний, показывает лучшую прочность на сжатие при несмешивании, тогда как постепенное увеличение процента смешивания, безусловно, приведет к снижению прочности на сжатие образцов во все дни испытаний.В случае веса увеличение процента смешивания снизит вес.


    (a) Испытание на сжатие куба
    (b) Прочность на сжатие
    (a) Испытание на сжатие куба
    (b) Прочность на сжатие

    На рис. дней. Более того, в этом анализе прочности на разрыв при раздельном растяжении увеличение процента смешивания, безусловно, уменьшит вес, а также снизит факторы упрочнения.


    (a) Прочность на разрыв при разделении на цилиндре
    (b) Прочность на разрыв при разделении
    (a) Прочность на разрыв при разделении на цилиндре
    (b) Прочность на разрыв при разделении

    Из двух вышеупомянутых форм (кубической и формы цилиндра) прогнозируемые результаты анализа прочности на сжатие и анализа прочности на разрыв при растяжении практически аналогичны. Давайте посмотрим на экспоненциальное поведение и его уравнение регрессии для прочности на сжатие и прочности на разрыв.

    Экспоненциальный график на основе процента смешивания для прочности на сжатие. Рисунок 5 моделирует экспоненциальную кривую на основе регрессии для анализа прочности на сжатие для различных процентных соотношений смешивания. Из рисунка 5 последовательные испытания образцов в течение 28 и 56 дней дали почти одинаковые значения, тогда как экспоненциальное уравнение прочности на сжатие в таблице 2 находится в диапазоне от 0 до 35 Н / мм 2 во всех четырех оценочных уравнениях, вызывая увеличение процента смешивания, которое будет снизить все четыре параметра сухой массы на 7, 28 и 56 дней.В четырех случаях, кроме сухого веса, производительность снижается, тогда как в случае увеличения сухого веса процент смешивания, безусловно, снижает вес.

    На Фигуре 6 график показывает экспоненциальное изменение сухой массы и для различных последовательных дней, таких как 7, 28 и 56. В этой сухой массе, имеющей предел прочности на разрыв почти, обозначает процент смешивания; в дополнение к этому, экспоненциальная кривая, основанная на всех других последовательных днях, уменьшается, и они почти похожи друг на друга, имея диапазон (0–15) Н / мм 2 .


    Таблица 2 включает данные о сухом весе и образце за последовательные дни, такие как 7, 28 и 56 дней, начиная с сухого веса в прочности на сжатие, которая начинается с более низких значений регрессии и продолжает увеличиваться в течение 7, 28 и 56 дней. , тогда как в случае разделения прочности на разрыв значение регрессии сухого веса больше, чем значение регрессии прочности на сжатие.В случае анализа по дням значения регрессии увеличиваются с увеличением количества дней в модели регрессионного анализа прочности на растяжение.

    4.2. Анализ прочности на изгиб

    Одним из показателей прочности бетона на растяжение является прочность на изгиб. Это расчет неармированной бетонной балки или плиты на устойчивость к разрушению при изгибе (рис. 7). Разработчики дорожных покрытий используют теорию, основанную на прочности на изгиб; поэтому может потребоваться разработка лабораторной смеси, основанная на испытании на прочность на изгиб.В Таблице 3 использованы процентные доли замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) с коэффициентами 0% и 5%.

    9027 9027 9027 9027 9027 9027 9027

    Характеристики Экспоненциальная регрессия для прочности на сжатие Экспоненциальная регрессия для разделенной прочности на растяжение

    28 дней
    56 дней


    процент замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) в размере 5% лучше, чем 0%. Сухой вес образца снижается до 5%, а прочность балки на изгиб в течение 7 дней составляет 1.67% больше 0%, а через 28 дней это 1,52% больше 0%, а через 56 дней 1,46% больше 0%.

    В таблице 4 приложена испытательная нагрузка от 0 до 86,32 кН с различными интервалами, и мы попытались найти прогиб M 20 в левой, средней и правой части балки. Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет около 1,71 мм, в то время как при среднем отклонении оно составляет около 2,961 мм, а в правой части отклонение составляет около 1.810 мм.


    Тип образца Сухой вес образца в кг Предел прочности при изгибе балки (Н / мм 2 )
    7 дней 28 дней 56 дней

    Control 56.25 16,65 24,7 25,83
    5% замена 55,13 17,58 26,03 27,13


    0 9038 0,58 9027 9027 9027 9027 9027 9027 1,9723838 2,54 9038 3,46 9027 9027
  • 9027 9

  • Нагрузка (кН) Отклонение (мм)
    (0% замена летучей золы, золы и LECA)
    Левый Средний Правый

    0 0 0
    3,92 0,21 0,252 0,194
    7.84 0,284 0,324 0,284
    11,77 0,42 0,54 0,5
    15,69 0,58 0,756 0,756 0,785
    23,54 1,031 1,234 1,016
    27,46 1,202 1,512 1.198
    31,39 1,382 1,962 1,391
    35,32 1,594 2,264 1,624
    39,24 2,936 1,986
    47,03 2,052 3,142 2,034
    51,01 2.21 3,364 2,198
    54,94 2,352 3,724 2,346
    58,86 2,41 4,125
    66,71 2,625 4,96 2,618
    70,63 2,715 5,146 2,708
    74.56 2,86 5,476 2,846
    78,48 3,14 5,742 3,008
    82,41
    4,07

    В таблице 5 испытательная нагрузка приложена к M 20 от 0 до 86,32 кН с различными интервалами, а прогибы были измерены в левой, средней и правой части балки. .Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет примерно 1,782 мм, в то время как в средней части отклонение составляет примерно 2,960 мм, а в правой части отклонение составляет примерно 1,78 мм. Из Таблицы 5 доказано, что прогиб 5% замены прочности на изгиб выше, чем 0% замены.

    9238 2,265 9027 90277 9027 9027 9027 9

    Нагрузка (кН) Прогиб (мм)
    (5% замена летучей золы, золы и LECA)
    Левый Средний Правый

    0 0 04 0
    0,205 0,25 0,207
    7,84 0,29 0,321 0,285
    11,77 0,45 9027 907 907 9027 9027 907 9027 907 9027 907 0,535
    19,62 0,81 1,02 0,793
    23,54 1,037 1,231 1,037
    27.46 1,198 1,507 1,20
    31,39 1,375 1,96 1,379
    35,32 1,584
    2,265 1,816
    43,16 2,05 2,937 2,02
    47,03 2,07 3,14 2,05
    51.01 2,15 3,361 2,17
    54,94 2,38 3,72 2,38
    58,86 2..46
    4,19 … 2,56 4,587 2,54
    66,71 2,61 4,95 2,615
    70,63 2,69 5,143 7469 2,69 5,143 7469
    2,84 5,472 2,838
    78,48 3,11 5,74 3,115
    82,41 3,4 4,05

    На Рисунке 8, M 20 класс 0% и 5% замена летучей золы, зольного остатка и LECA проанализированы для проверки их прочности на изгиб.На графике четко указано, что при увеличении нагрузки прогиб также увеличивается на 0% и 5% среди (23), а средние значения прогиба аналогичны как 0%, так и 5%, но 0% они немного выше 5%. , тогда как на этом графике есть сумма всех уровней прогиба в 1 единице. Например, здесь тот факт, что рассматриваемая длина балки составляет 1 метр для экспериментального исследования путем приложения «» единицы нагрузки, вызовет величину отклонения в обоих случаях (0% и 5%) в отношении увеличения нагрузка, чтобы обязательно увеличить прогиб.


    5. Заключение

    В статье достигается максимально возможная прочность для бетона LECA, отмечена передовая технология производства легкого бетона. Результаты показывают, что замена 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) показала хорошие показатели прочности на сжатие, прочности на разрыв и прочности балки на изгиб. 56 дней по сравнению с 28 днями силы.При этом прочность 28 суток также примерно равна нормальному обычному бетону; то есть замена на 0% и уменьшение сухого веса образца. В будущем методы мягких вычислений приведут к тому, что в основных областях мы сможем достичь лучшей производительности за короткий промежуток времени, поскольку время является основным фактором, участвующим в этой исследовательской работе.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

    % PDF-1.5 % 1 0 obj> эндобдж 2 0 obj> эндобдж 3 0 obj> / Метаданные 741 0 R / Pages 6 0 R / StructTreeRoot 361 0 R >> эндобдж 4 0 obj> эндобдж 5 0 obj> эндобдж 6 0 obj> эндобдж 7 0 obj> эндобдж 8 0 obj> эндобдж 9 0 obj> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 0 / Tabs / S> > эндобдж 10 0 obj> эндобдж 11 0 obj> эндобдж 12 0 obj> эндобдж 13 0 obj> эндобдж 14 0 obj> эндобдж 15 0 obj> эндобдж 16 0 obj> эндобдж 17 0 obj> эндобдж 18 0 obj> эндобдж 19 0 obj> эндобдж 20 0 obj> эндобдж 21 0 obj> эндобдж 22 0 obj> эндобдж 23 0 obj> эндобдж 24 0 obj> эндобдж 25 0 obj> эндобдж 26 0 obj> эндобдж 27 0 obj> эндобдж 28 0 obj> эндобдж 29 0 obj> эндобдж 30 0 obj> эндобдж 31 0 объект> эндобдж 32 0 obj> эндобдж 33 0 obj> эндобдж 34 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 1 / Tabs / S >> эндобдж 35 0 obj> эндобдж 36 0 obj> эндобдж 37 0 obj> эндобдж 38 0 obj> эндобдж 39 0 obj> эндобдж 40 0 obj> эндобдж 41 0 объект> эндобдж 42 0 obj [45 0 R] эндобдж 43 0 obj> эндобдж 44 0 obj> эндобдж 45 0 obj> эндобдж 46 0 obj> эндобдж 47 0 obj> эндобдж 48 0 obj> эндобдж 49 0 obj> эндобдж 50 0 obj> эндобдж 51 0 obj> эндобдж 52 0 obj> эндобдж 53 0 obj> эндобдж 54 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 2 / Tabs / S >> эндобдж 55 0 obj> эндобдж 56 0 obj> эндобдж 57 0 obj> эндобдж 58 0 obj> эндобдж 59 0 obj> эндобдж 60 0 obj> эндобдж 61 0 объект> эндобдж 62 0 obj> эндобдж 63 0 obj> эндобдж 64 0 obj> эндобдж 65 0 obj> эндобдж 66 0 obj> эндобдж 67 0 obj> эндобдж 68 0 obj> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] >> / StructParents 3 / Tabs / S >> эндобдж 69 0 obj> эндобдж 70 0 obj> эндобдж 71 0 объект> эндобдж 72 0 obj> эндобдж 73 0 объект> / MediaBox [0 0 595.276 841.89] / Parent 6 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / XObject >>> / StructParents 4 / Tabs / S >> эндобдж 74 0 obj> эндобдж 75 0 obj> эндобдж 76 0 obj> эндобдж 77 0 obj> эндобдж 78 0 obj> эндобдж 79 0 obj> эндобдж 80 0 obj> эндобдж 81 0 объект> эндобдж 82 0 объект> поток xSWsNUSuN ծ / B $ H «& ƘHVUĄEEAQ I8 «(rs0̅

    Влияние облицовочного материала на паропроницаемость легкого пенобетона (LECA)

    [1] Каприелов, С.С., Батраков В.Г., Шейнфельд А.В. Модифицированные бетоны нового поколения: реальность и перспективы (1999) Бетон и железобетон, 6 (501), с.6-10. (рус).

    [2] Ин Бо Цзян, Сяо Жун Ван.Исследование термических и структурных характеристик сланцевого керамзитобетона (2010) Advanced Materials Research, 168-170, pp.885-888.

    DOI: 10.4028 / www.scientific.net / amr.168-170.885

    [3] Нкансаха, М.А., Альфред, А., Бартб, Т., Фрэнсисб, Г.В. Использование легкого керамзитового заполнителя (LECA) в качестве сорбента для удаления ПАУ из воды (2012) Journal of Hazardous Materials, 217–218, pp.360-365.

    DOI: 10.1016 / j.jhazmat.2012.03.038

    [4] Ардакани, А., Яздани, М. Связь между плотностью частиц и статическими модулями упругости легких заполнителей керамзита (2014) Applied Clay Science, 6 (25), стр.28-34.

    DOI: 10.1016 / j.clay.2014.02.017

    [5] Губертова, М., Хела, Р. Долговечность легкого пенобетонного заполнителя (2013 г.) Procedure Engineering, 65, стр. 2–6.

    DOI: 10.1016 / j.proeng.2013.09.002

    [6] Бахаре, Д., Корякинс, А., Казжонов, Дж., Розенстрауха, И. Пористая структура легкого глиняного заполнителя, объединенного с неметаллическими продуктами, поступающими из промышленности по переработке алюминиевого лома (2012).

    DOI: 10.1016 / j.jeurceramsoc.2011.07.039

    [7] Дюкман, В., Миртич, Б. Паропроницаемость легкого бетона, приготовленного с использованием различных типов легких заполнителей (2014), Строительные и строительные материалы, 68, стр. 314-319.

    DOI: 10.1016 / j.conbuildmat.2014.06.083

    [8] Мортазави, М., Маджлесси, М. Оценка влияния микрокремнезема на прочность на сжатие конструкционного легкого бетона, содержащего LECA в качестве легкого заполнителя (2012) Advanced Materials Research, 626, стр. 344-349.

    DOI: 10.4028 / www.scientific.net / amr.626.344

    [9] Хаго, А.W., Al-Nuaimi, A.S., Al-Saidy, A.H. Бетонные блоки для теплоизоляции в жарком климате (2005) Исследование цемента и бетона, 35, стр. 1472-1479.

    DOI: 10.1016 / j.cemconres.2004.08.018

    [10] Ватин, Н.И., Горшков А.С., Немова Д.В., Гамаюнова О.С., Тарасова Д.С. Влажность однородной стены из газобетонных блоков с отделочными штукатурными составами (2014) Прикладная механика и материалы, 670-671, с. 349-354.

    DOI: 10.4028 / www.scientific.net / amm.670-671.349

    [11] Граубнер, C-A., Похи, С. Качество кирпичной кладки из легкого бетона, связанное с устойчивостью (2014) Concrete Plant and Precast Technology, 80, pp.122-124.

    [12] СП 23-101-2004 (Свод правил).Проектирование тепловой защиты зданий. (рус).

    [13] Вавилин, В.Ф., Коротаев С.А., Кузнецов Н.М. Строительная физика: Третье издание (2002) Издательство Мордовского университета: Третье издание, 58 с. (рус).

    [14] [Процессы теплообмена и тепловая изоляция] [веб-источник] URL: http: / www.startbase. ru / knowledge / article / 136 / (дата обращения: 20.09.2014). (рус).

    [15] Николаев, С.В., Беляев В.С., Зырянов В.С., Шалыгина Е.Ю., Штейман Б.И. Нормы на проектирование и строительство теплоэффективных наружных стен жилых и общественных зданий из облегченных керамзитобетонных блоков: Издание 1-е.

    [16] Кнатько, М.В., Ефименко М.Н., Горшков А.С. К вопросу о долговечности и энергоэффективности современных ограждающих стеновых конструкций жилых, административных и производственных зданий.

    [17] Баженов Ю.М. Технология бетона: Издание первое (2002) Издательство АСВ: Издание первое, 455 с. (рус).

    [18] Бескоровая, О.Н., Бычков Д.С., Гаевская З.А. Быстромонтируемые здания из легкого наномодифицированного бетона (2014).

    [19] Солощенко, С.С. Влажностный режим конструкции вентилируемого штукатурного фасада (2010) Инженерно-строительный журнал, 8, с.10-15. (рус).

    [20] Горшков, А.С., Ватин Н.И., Глумов А.В. Влияние физико-технических и геометрических характеристик штукатурных покрытий на влажный режим однородных стен из газобетонных блоков.

    [21] ГОСТ 25898-83 (Российский библиографический стандарт).Материалы и изделия строительные. Методы определения сопротивления паропрониканию. [Строительные материалы и изделия. Методы определения сопротивления пропусканию водяного пара. (рус).

    [22] Клесс, П.А., Эльсаяд, Х. И., Ганджян, Э. Измерения проницаемости для водяного пара и жидкости в цементных образцах (2009), Успехи в исследованиях цемента, 2 (21), стр.83-89.

    DOI: 10.1680 / adcr.8.00046

    [23] Научно-позновательный интернет-журнал Все про воду », Что такое« Точка роза »и для чего она нужна? для,] [веб-источник] URL: http: / pro8odu.ru / виды-воды / роза / точка-розы-определение. html (дата обращения: 25.09.2014). (рус).

    [24] Джради, М., Риффат, С. Экспериментальное и численное исследование системы охлаждения точки росы для теплового комфорта в зданиях (2014) Applied Energy, 132, стр. 524-535.

    DOI: 10.1016 / j.apenergy.2014.07.040

    [25] Питер А.Клесс. Измерения проницаемости для водяного пара и жидкости в бетоне (2014) Транспортные свойства бетона, 25, стр.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *