Обзор цементной промышленности — FIRA.RU
Цементная промышленность является одной из старейших в России, первый завод по производству портландцемента был построен еще в 1839 году. В настоящее время цемент и изготовляемые из него бетон и железобетон являются основными строительными материалами, которые используются в самых разнообразных областях строительства. При этом цемент остается относительно простым, универсальным и дешевым материалом, для изготовления которого требуются довольно доступное сырье — известняк, мергель, глины, мел, гипс, а также вода.
В настоящее время существуют следующие основные способы производства цемента: мокрый, сухой, комбинированный, а также их вариации. Преимуществом сухого метода производства по сравнению с мокрым является более высокий съем клинкера с 1 кв. метра печного агрегата, а также более низкий расход топлива. Так, производство портландцементного клинкера сухим способом требует в два раза меньше расхода топлива, чем мокрым. Глобальными тенденциями в производственном процессе цементных заводов являются отказ от мокрого способа производства и постепенный переход на сухой.
Основными факторами размещения предприятий цементной промышленности являются потребительский и сырьевой. Первый выражается в концентрации производства вблизи потенциальных потребителей — крупнейших городов и промышленных центров. Второй обусловлен наличием доступной и недорогой сырьевой базы.
На сегодняшний день в России насчитывается 58 цементных заводов с суммарной производственной мощностью порядка 106 млн. тонн цемента в год (Для получения детального анализа отрасли производств цемента, можно обратиться к сотрудикам — fira.ru). Производителей цемента на российском рынке условно можно разделить на три группы: российские холдинги, объединяющие несколько заводов; российские заводы, не входящие в состав промышленных групп; зарубежные холдинги, осуществляющие свою деятельность на территории России.
К крупнейшим российским холдингам относятся «Евроцемент груп», «Сибирский цемент»; ведущие зарубежные производители представлены на российском рынке компаниями LafargeHolcim, Heidelberg. Российские заводы, не входящие в состав промышленных групп, выпускают, как правило, небольшие объемы цементной продукции.
Крупнейшим производителем цемента в России является АО «Евроцемент Груп», которое представляет собой международный вертикально интегрированный промышленный холдинг по производству строительных материалов и объединяет 19 цементных заводов, 16 из которых расположены в России, остальные — в Украине и Узбекистане. Суммарная производственная мощность российских цементных заводов, входящих в состав АО «Евроцемент груп», составляет свыше 50 млн. тонн цемента в год. Также в состав холдинга входят заводы по производству бетона, ЖБИ, холдинг располагает богатейшей сырьевой базой — запасы нерудных материалов составляют более 5,5 млрд. тонн. По данным союза производителей цемента, на долю заводов АО «Евроцемент Груп» пришлось около 30% произведенного в 2016 году цемента.
производство цемента, виды, марки цемента, про цемент.
Цемент — один из немногих строительных материалов, без которого невозможно какое-либо строительство. Будь то монолитный небоскрёб из железобетона или деревянная избушка. Ведь только в сказке у избушки бывают куриные ножки. В жизни же — её «фундаментные ножки» из бетона. История создания и изобретение цемента заслуживают отдельного разговора и в рамки нашей рубрики никак не укладываются.
Так всё же из чего изготовлен портландцемент. Какие у него основные характеристики: виды, марки. Давайте, обо всём по чуть-чуть, но по сути. Так сказать — для общей информации. Начнём, пожалуй, с главного — с производства цемента.
Производство цемента
Если особо не вдаваться в подробности и поверхностно посмотреть на процесс, то производство цемента можно представить в виде трёх основных стадий:
- Добыча и обработка сырья.
- Добывается известняк, глина, гипсовый камень.
- Добытый известняк дробят, сушат, измельчают и перемешивают в нужной пропорции с глиной. Примерно 75% известняка и 25% глины. Состав постоянно корректируется, в зависимости от характеристик используемых материалов.
- Таким образом получают шлам (мокрый, сухой или комбинированный метод)
- Обжиг сырьевого состава и получение клинкера — следующий шаг в производстве цемента
- Шлам поступает в специальную печь, где происходит его обжиг при температуре около 1450 градусов.
- При этой температуре шлам спекается (почти как зерна керамзита), превращаясь в так называемый клинкер.
- Клинкер измельчают в специальных жерновах до порошкообразного состояния
- Смешивание компонентов и получение портландцемента.
- В измельчённый клинкер добавляют примерно 5% гипса.
- В зависимости от марки и вида цемента, вводятся минеральные добавки (цифры д0, д5, д20 в маркировке)
Собственно, на этом производство цемента можно считать завершённым. Получившийся порошок является портландцементом ПЦ. Применение портландцемента настолько обширно, что перечисление цементной продукции может занять целую страницу. Собственно об этом можно почитать нашу статью цемент в производстве бетона и ЖБИ
Основные виды цемента
- Белый цемент
Основное использование БЦ — изготовление строительных сухих смесей. По многим параметрам обгоняет обычный портландцемент: ускоренный набор прочности, повышенная стойкость к атмосферным воздействиям. Изначальная декоративность ЖБИ из БЦ позволяет эксплуатировать архитектурный железобетон — без дополнительной окраски и облицовки. ЖБИ из белого цемента — не темнеют, не выгорают, не желтеют от времени. Так же, БЦ используют в штукатурных растворах, для изготовления цветных поверхностей задекорированных под камень и т.д. Для этого, белый цемент смешивают с красящими пигментами.
- Быстротвердеющий цемент
Зачастую, цементы, включающие в свой состав активные минеральные добавки, пользуются более низким спросом, нежели их бездобавочные собратья по цементному цеху. Причина тому — более медленный темп схватывания добавочного цемента. А подобная затяжка способна внести свои коррективы в сроки оборачиваемости опалубки, в скорость бетонирования, да и в весь строительный процесс в целом. Для того, чтобы строители не были привязаны к затянутым срокам схватывания цемента с минеральными добавками, многие цементные заводы выпускают цемент быстротвердеющий. Причём, быстротвердеющими бывают как добавочные, так и бездобавочные виды цемента. Например: Предприятие Мордовцемент производит и продаёт бездобавочный быстротвердеющий цемент м500 д0 в мешках и навал.
- Расширяющийся цемент
РЦ получают из глиноземистого цемента и гипса. Отличается от остальных видов расширением при твердении. Почти все остальные виды дают усадку ( кроме ВБЦ и НЦ)
- Водонепроницаемый безусадочный цемент
В основном, применяется при: гидроизоляции монолитных конструкций, заделке швов между железобетонными элементами, герметизации различных стыков, сооружении водонепроницаемых бетонных емкостей для хранения различных жидкостей.
- Гидрофобный цемент
Цемент с введением специальных добавок, повышающих его стойкость к хранению и транспортировке во влажной среде, Так же, ГЦ используют, чтобы получить товарный бетон с повышенной влагонепроницаемостью и морозостойкостью до F1000
- Глиноземистый цемент
Он же — аллюминатный и бокситный. Основное преимущество — бетоны из такого вяжущего быстрее набирают прочность: до 50% за сутки. Процесс твердения сопровождается большим количеством тепла, что может быть актуально при зимнем бетонировании.
- Напрягающий цемент.
Расширяющийся при наборе прочности цемент, предназначенный для создания самонапряженных железобетонных конструкций, в т.ч. с использованием специальных видов арматуры. Растворы на таком вяжущем применяются при изготовлении трещиностойких (безусадочных), водонепроницаемых стыков, при капитальном ремонте и модернизации старых конструкций, увеличении их водонепроницаемости. Бетоны на основе НЦ — чемпионы по коэффициенту водонепроницаемости: до W20, что актуально при строительстве подвалов на грунтах с высоким УГВ, монолитных кровель, резервуаров, чаш бассейнов и т.д. — без устройства дополнительной гидроизоляции. Бетон, полученный из напрягающего цемента, первые 7-10 дней набора прочности должен находиться в среде с повышенной влажностью. Такие бетоны отличаются повышенной прочностью, влагонепроницаемостью и морозостойкостью.
- Портландцемент
Портландцемент. Самый распространённый и используемый вид. Наверно 99% цемента, используемого в строительстве это — портландцемент ПЦ.
- Пуццолановый цемент
Потрландцемент с введением добавок, содержащих тонкоизмельчённый активный кремнезём. Отличается увеличенным временем схватывания и пониженным тепловыделением. Что может быть актуально при бетонировании объемных конструкций. А именно: Крупные массивы свежеуложенного бетона вырабатывают большое количество тепла. Ведь гидратация цемента — всё же экзотермический процесс. Ну вырабатывают и вырабатывают, в чем проблема. А беда в том, что верхние слои бетона отдают тепло быстрее и больше, нежели те, что внутри. Теплопроводность то у бетона маленькая. Вот и получается неравномерность усадки. Одним словом — трескается.
- Сульфатостойкий цемент
СЦ обладает повышенной защитой от разрушающего действия солей (сульфаты натрия, магния). Подробней про цемент сульфатостойкий. Применяется в производстве сульфатостойких бетонных смесей. (гидротехнические сооружения и т.д)
- Тампонажный цемент
ТЦ применяют при тампонировании (заглушке) нефтяных и газовых скважин.
- Шлаковый цемент
ШЦ, получают из молотого доменного шлака, с введением добавок активизаторов: гипса, извести и т.д.
- Цветной цемент
ЦЦ получают введением в состав окрашивающих пигментов из белого цементного клинкера Основное предназначение ЦЦ — получение декоративных ЖБИ, не требующих дальнейшей обработки.
Марки цемента
Марочная прочность сродни марке бетона. Цифра марки соответствует устойчивости к осевому сжатию в кгс/кв.см или в МПа.
Как проверить марку цемента:
Определение марки осуществляют таким образом: замешивают раствор из цемента, с составом: 1:3, на стандартном песке, с водоцементным отношением 0.4. Из этого раствора в специальных формах отливаются балочки 4х4х16 см. Далее эти образцы помещают в специальную камеру либо просто накрывают колпаком ( не забыв поставить рядом сосуд с водой, для повышения влажности под колпаком). Выдерживают 24 часа. Затем балочки вынимают из опалубки-формы, и ставят в пропарочную камеру. Пропаривают и у полученных образцов проверяют прочность на изгиб. Используется специальный пресс. Полученные результаты умножают на соответствующие коэффициенты (для каждой марки цемента — они свои) и получают прочность на сжатие.
Импортный цемент уже давно маркируется в классах прочности на сжатие. Например: Cem 42.5 — минимальная (гарантированная) прочность на сжатие в возрасте 28 суток -42. 5 МПа.
Маркировка цемента в соответствии с ГОСТ 10178-85
- тип – портландцемент, шлакопортландцемент. Указывается в виде аббревиатуры ПЦ и ШПЦ.
- марка
- наличие или отсутствие мин. добавок : д0, д5, д20 (процентный состав добавок). Например: м400 д20, или цемент м500 д0.
- обозначение быстротвердеющего цемента литерой Б
- пластификация и гидрофобизации цемента. Аббревиатуры ПЛ и ГФ.
- обозначения цемента, изготовленного из клинкера нормированного состава. Литера Н
- обозначения стандарта соответствия .
Классификация цемента в соответствии с ГОСТ 31108-2003.
У нас в России тоже постепенно вводятся классы цемента по прочности на сжатие. Пока это касается в основном портландцемента импортного производства. Наши российские цементные заводы не торопятся переходить на классы. Хотя, отдельные цемзаводы уже выпускают цемент, классифицируемый в соответствии с ГОСТ 31108-2003. Официальной датой начала «новой жизни» считается 1 января 2008 года. Именно тогда российским производителям цемента дали добро на новые обозначения. Однако, мало кто торопится это вводить в производство. Ну если только Мордовцемент полностью перешёл на новый ГОСТ. Большинство пока мечется. В общем, когда наконец произойдёт всеобщее «классовое равенство», основные характеристики портландцемента, в соответствии с ГОСТ 31108-2003, будут обозначаться так:
- цем I — портландцемент
- цем II – портландцемент с мин. добавками
Портландцемент с мин. добавками будет представлен в двух подтипах:
- Подтип А — процентный состав мин добавок 6% — 20%,
- Подтип В — присутствие в составе от 21 до 35% добавок.
Отличие по видам добавки: гранулированный шлак с литерой Ш, пуццолан – с литерой П. По классам прочности: 22,5; 32,5; 42,5 и 52,5, Цифры — обозначают минимальную (гарантированную) прочность цементного камня на сжатие в МПа в возрасте 28 суточного твердения.
Так же, для классов 32.5-52.5 вводятся дополнительные обозначения по прочности в возрасте 2 или 7 суток: литеры :Н нормальнотвердеющий, Б — быстротвердеющий. В виду того, что добавочные портландцементы отличаются более медленными сроками схватывания, что не совсем подходит для темпов современного строительства, цементные заводы выпускают портландцементы марок м400 д20Б и цем 42,5Б, входящие в категорию — быстротвердеющие. Уменьшение сроков набора прочности происходит за счёт применения цементного клинкера специального минералогического состава, либо за счёт более тонкого помола обычного цементного клинкера. Иногда, для ускорения сроков схватывания и твердения применяются специальные добавки для бетона.
Когда эта классификация портландцемента начнёт применяться в полной мере — остаётся только догадываться. Пока мы живём по своему стандарту. Причём, как и при производстве и продаже бетона: ну никак не хотим уходить от марок. Впрочем, это никому не мешает. Если так удобней заказчикам, то производители — не против :-)))
Предлагаем ознакомиться с другими материалами о цементе, размещёнными на нашем сайте.
Цементные заводы России — полный список производителей
История производства цемента в России начинается с заявки на патентование нового вяжущего вещества Егором Челиевым в 1825 году. Хотя, практические работы с применением цементных смесей велись в 1813 году при восстановлении Москвы на работах по укреплению берегов Москва-реки и строительстве Кремля. Но волею судеб автором портландцемента считается англичанин Дж. Аспдин (Joseph Aspdin), запатентовавший технологию в 1824 году. Начиная с 1836 года, Россия постоянно наращивала производство цемента, которое к 1913 году достигло 1,78 млн. тонн в год. Большинство предприятий располагалось на юге России, где месторождения известняка или мергеля выходят на поверхность (как говорят ученые — южнее границы последнего ледникового периода).
Виды продукции
Все виды продукции являются производными от портландцемента. Минеральные добавки и вид основного сырья придают цементу различные свойства.
- Белый цемент — основа для отделочных смесей, цветного цемента марки ЦЦ. Применяется для строительства архитектурных объектов без последующей отделки.
- Быстротвердеющий цемент — применяется в строительстве быстровозводимых и заливных строений.
- Водонепроницаемый безусадочный цемент — применяется в строительстве для формирования гидроизоляции и заделки швов гидросооружений.
- Гидрофобный цемент — присадки снижают водопоглощающие свойства, что увеличивает срок хранения.
- Глиноземистый цемент — добавки глинозема (аллюминат и бокситы) увеличивают скорость отверждения с выделением большого количества тепла. Актуально для зимнего строительства. При добавлении гипса получается расширяющийся цемент марки РЦ.
- Напрягающий цемент — применяется для изготовления железобетонных изделий.
- Пуццолановый цемент — добавление тонкоизмельчённого активного кремнезёма увеличивает время схватывания и понижает тепловыделение. Актуально при возведении объектов с большими сечениями и объемами.
- Сульфатостойкий цемент — характеризуется жесткими ограничениями по содержанию трёхкальциевого алюмината и трёхкальциевого силиката. Применяется при возведении сооружений циклически контактирующих с водой.
В отдельную группу выделяются шлаковые цементы, которые изготавливаются из отходов металлургического производства или золы от сжигания сланцев и бурого угля. Применяется в производстве шлакоблоков.
Технология производства
Принцип производства цемента не претерпел кардинальных изменений с момента его изобретения. Основные процессы:
- Добыча известняка или мергеля открытым способом.
- Измельчение.
- Приготовление смеси.
- Обжиг.
- Выдержка. Выдержка производится в течение 1…2-х недель для завершения химических процессов.
- Помол, упаковка в мешки или закладка в силосы для хранения.
Различают два способа — сухой и мокрый. При использовании мокрого способа перемешивание происходит с добавлением воды, которую затем выпаривают. К достоинствам этого способа можно отнести равномерность смеси по составу и размеру фракций. Недостаток — большой расход энергии на выпаривание воды перед обжигом (энергозатраты составляют 20…25% стоимости).
Производится в клинкерной (вращающейся) печи с факельной горелкой. Печи для мокрой смеси вдвое длиннее и больше по диаметру, чем печи для сухой смеси. Температурный режим: верхняя загрузочная зона — 70…200 °С, зона декарбонизации — 700…1100 °С, зона спекания 1300…1450 °С, зона охлаждения — 1300…900 °С, с переходом в холодильник для быстрого охлаждения гранул.
Сухой способ приготовления смеси получил развитие с появлением устройств экспресс-анализа состава смеси и технологий с автоматизацией процесса смешивания, что снизило энергетические затраты в 2…3 раза и увеличило съем продукции с одного квадратного метра производственной площади. На выходе получаются клинкерные гранулы.
Положение в отрасли
Пик развития производства цемента приходится на 1965…1972 годы. СССР занимал первое место в мире, производя 100…140 млн. тонн в год (мощности предприятий РСФСР — 89…95 млн. тонн). В 90-е годы было выведено из производства более половины предприятий общей мощностью 17…23 млн. тонн. Оставшиеся предприятия объединены в десяток производственно-строительных групп.
Ведущие компании:
- Евроцемент Груп (13 крупнейших заводов по всей территории России).
- Холдинг Holcim Group.
- Группа компаний ЛСР.
- Консорциум United Cement Group.
- Холдинг Сибирский цемент.
- ХайдельбергЦемент Рус.
- Компания Lafarge.
Темпы ежегодного прироста за период 2009…2012 годы составлял 4,5 %, а в 2013 — 7,8% (объем 66,4 млн. тонн). В настоящее время 90% цемента производится по затратному «мокрому» способу.
Перспективы отрасли
В целом перспективы рынка цемента имеют основания для оптимизма. Потребность в цементе удовлетворяется промышленностью на 90%, а Правительство планирует строительство большого количества объектов (чемпионат мира по футболу, газопровод Южный поток, космодром Восточный, особый экономический статус Дальнего Востока и др.). Главным сдерживающим фактором развития отрасли является отставание в применении технологии сухого приготовления смеси. Законченная реконструкция ряда предприятий и ввод в строй нескольких новых позволит снизить процент «мокрого» производства до 70, что явно недостаточно (в Европе таких производств нет совсем). По данным ФТС РФ стоимость импортного цемента составляет 56…70 долларов за тонну, что существенно превышает среднюю внутреннюю цену 110…130 $/тонну (ДФО — 183 $/тонну). Такая ситуация (при объеме импорта 12…14 млн. тонн в год за последние два года) оказывает существенное давление на внутренних производителей.
Завод по производству цемента | Kawasaki Heavy Industries
История
Компания «Кавасаки Хэви Индастриз, Лтд.» поставила большое количество оборудования для производства цемента по всему миру, начав с самой первой поставки вращающейся печи в 1932 г. Спроектированный и построенный нами цементный завод своей высокой производительностью привлек внимание мировых производителей цемента и специалистов. На сегодняшний день крупномасштабные и энергоэффективные цементные заводы от компании Kawasaki поставляются по всему миру и завоевали признание пользователей за устойчивые эксплуатационные качества.
Цементный завод Вальцовая мельница CKСила в комплексных решениях
Наше преимущество заключается в совершенстве наших технологий, в том числе технико-экономическое обоснование, проектирование, производство, закупки, строительство, испытания, прогоны, эксплуатация и обслуживание, модернизация цементных заводов, а также производство оборудования для цементных заводов. Мы также применяем наши технологии на заводах по обработке цветных металлов, для систем обжига известняка. Мы достигли значительных результатов в экономии энергии и повышении КПД для всех систем.
Новый подход
После технического центра Kawasaki на Филиппинах (KDT) компания Kawasaki создала три совместных предприятия в Китае, ACK, CKM и CKE, для проектирования, закупки и производства оборудования для цементных заводов. Компания Kawasaki может поставить высокопроизводительное оборудование, разработанное с помощью наших выдающихся технологий для соответствия инвестиционным потребностям заказчиков. Компания Kawasaki взяла на себя руководство цементным заводом компании IHI Corporation и даже приобрела технологии для вертикальной вальцовой мельницы OK.
За экологически чистые разработки
Машины и оборудование для производства цемента от компании Kawasaki позволяют достичь максимальных рабочих показателей в области экономии энергии, высокого КПД и защиты окружающей среды. Декарбонизаторы в составе системы KSV «Низкий NOx» (вихревая камера с фонтанирующим слоем) от компании Kawasaki поставляется в крупные цементные компании и помогает в денитрации и экономии энергии. В октябре 2014 г. было поставлено 45 установок KSV производительностью от 1700 до 8500 тонн/сутки, а 16 установок производительностью от 3500 до 1200 тонн/сутки было зарезервировано для немедленной поставки. Мельницы CK нового поколения от компании Kawasaki высоко ценятся за низкий расход энергии. С 2009 г. компания Kawasaki зарезервировала и (или) поставила 97 установок мельниц CK нового поколения.
-Рекуперация отработанного тепла на цементных заводах
Мы можем предложить установки с более высоким уровнем энергоэффективности в ответ на требования к учету экологических факторов нашими заказчиками за счет сочетания энергетической установки с системой рекуперации отработанного тепла. Данная система использует тепловую энергию отработанного газа от SP (NSP) и клинкерного холодильника и таким образом генерирует и покрывает 30-40% расхода электроэнергии на цементном заводе. Компания Kawasaki является пионером в области технологий рекуперации отработанного тепла.
-Система нулевых выбросов Zero Emission Eco Town (ZEET)
Система нулевых выбросов Zero Emission Eco Town (ZEET) представляет собой комплексную систему на цементном заводе и установке для сжигания отходов. Система ZEET обрабатывает отходы производства и шлам и перерабатывает их в энергию и сырье для производства цемента. Данная система сокращает расход топлива на производство цемента благодаря получению энергии из газифицированных отходов. Так как зола используется в качестве сырья для цемента, окончательная утилизация золы больше не требуется. Данная система сокращает выбросы CO2 по сравнению с полигонным захоронением отходов.
Особенности
Помимо общих работ по проектированию, мы производим сырьевые мельницы, печи, цементные мельницы, которые являются неотъемлемой частью обеспечения качества и экономии энергии при производстве цемента.
1) Ассортимент продукции для печей
— Запечный циклонный теплообменник нового типа (NSP)
— Вращающаяся печь / Сушильный барабан
2) Ассортимент продукции для мельниц
— Трубная мельница и сепаратор
— Вальцовая мельница CK
— Вальцовая мельница CKP
Основные поставки
1997 г. Индонезия / PT Indocement Tunggal Prakarsa P-10 (3800 т/сут.)
1999 г. Индонезия / PT Indocement Tunggal Prakarsa P-11 (7500 т/сут.)
2002 г. Myanmar Economic Corporation, Мьянма (4000 т/сут.)
2003 г. ОАЭ / Шарджа (3400 т/сут.)
2003 г. Вьетнам / VNCC Bimson (3500 т/сут.)
2004 г. Марокко / Lafarge Ciments 2300 т/сут.)
2004 г. Марокко / Holcim (Цементная мельница производительностью 115 т/ч)
2005 г. Туркменистан / GAP Insaat Yatirim Ve Dis Ticaret A.S. (3000 т/сут.)
2008 г. Vietnam Construction Import-Export Corporation, Вьетнам (VINACONEX) (6000 т/сут.)
2009 г. «Yemen General Corporation for Cement Industry & Marketing», Йемен (3300 т/сут.)
2009 г. Марокко / Lafarge Ciments (2300 т/сут., проект по расширению мощностей)
2010 г. Вьетнам / VNCC Butson Cement Company (4000 т/сут.)
2010 г. Вьетнам / Bimson Cement Joint Stock Company (5500 т/сут.)
Контакты
Если вам нужна дополнительная информация о нашем бизнесе, пожалуйста, свяжитесь с нами.
КонтактыТехнология производства / Цементный завод АО «ХайдельбергЦемент Волга»
Технология производства цемента на АО «ХайдельбергЦемент Волга» является современный «сухой» способ.
Существует два основных способа производства цемента «мокрый» и «сухой».
Сегодня, главным недостатком российских цементных заводов является то, что они используют «мокрый» способ, который гораздо более энергоемкий, чем используемый в развитых странах мира «сухой» способ. Поэтому для компаний важно постепенно переходить на более прогрессивные энергосберегающие технологии. АО «ХайдельбергЦемент Волга» использует «сухой» способ производства цемента, что позволило предприятию сократить удельные расходы топлива, резко повысить производительность печей и помольного оборудования.
При сухом способе производства дробленые сырьевые материалы высушиваются и тонко измельчаются. Полученная сырьевая мука после корректирования и усреднения до заданного химического состава обжигается в печах. С использованием этого способа, на обжиг клинкера расходуется от 750 до 1200 ккал/кг клинкера, при «мокром» способе производства—от 1200 до 1600 и выше ккал/кг клинкера. «Сухой» способ производства экономически целесообразен тогда, когда сырьевые материалы имеют низкую влажность и по возможности однородный химический состав, и в результате суммарный расход тепла на сушку сырьевых материалов и на обжиг клинкера ниже, чем расход тепла на обжиг этих материалов при мокром способе производства
Основные технологические этапы производства цемента.
- 1. Добыча и транспортировка сырья из карьера к приемному бункеру цеха «Сушка сырья».
- 2. Дробление, сушка сырьевых компонентов, транспортирование в арочный склад, для усреднения и хранения.
- 3. Доставка на крытый склад железосодержащих компонентов автотранспортом.
- 4. Транспортировка сырьевых компонентов из арочного склада на станцию дозирования. Дозировка сырьевых компонентов, получение сырьевой смеси, транспортировка до цеха «Помол сырья».
- 5. Помол сырьевой смеси, совмещенный с сушкой, подача готовой сырьевой муки в силос сырьевой муки.
- 6. Дозированная подача готовой сырьевой муки из силоса в теплообменник цеха «Обжиг».
- 7. Обжиг сырьевой муки во вращающейся печи с декарбонизатором и одноветьевым пятиступенчатым циклонным теплообменником.
- 8. Охлаждение готового клинкера и доставка его в силос клинкера для хранения.
- 9. Дробление и при необходимости сушка добавок для введения их в цемент, транспортировка добавок в силоса.
- 10. Дозировка компонентов для получения цемента. В зависимости от марки цемента.
- 11. Помол цемента в замкнутом цикле, транспортировка готовой продукции до силосов цемента.
- 12. Хранение и отгрузка цемента.
На всех технологических переделах контроль качества заводской лабораторией. Все виды цементов прошли обязательную сертификацию.
Все действующие цементные заводы России
|
Импортозамещение в цементной промышленности
Курс на импортозамещение в промышленности был определен Правительством Российской Федерации как один из приоритетов развития конкурентоспособности российской экономики.Российская цементная промышленность в полной мере готова обеспечить спрос на цемент как основной строительный материал для реализации всех проектов и программ строительства, в том числе в рамках приоритетного национального проекта «Жильё и городская среда». Мощности предприятий позволяют не только поставлять продукцию на российский рынок, но и расширять географию экспортных поставок высококачественного цемента различных марок.
При этом актуальным является вопрос зависимости цементной отрасли от импортного оборудования и запасных частей.
Факторы, сдерживающие сегодня развитие отрасли:
· дисбаланс спроса и предложения при общем профиците мощностей;
· недостаточный темп технологического перевооружения, модернизации и обновления основных фондов;
· частичная утрата научного потенциала, разрушение межотраслевых связей с машиностроительной отраслью;
· недостаточно высокий уровень энергоэффективности предприятий, в том числе низкий процент вовлечения отходов производства и потребления в качестве сырьевых и топливных компонентов при производстве цемента;
· необходимость совершенствования системы технического регулирования;
· рост тарифов естественных монополий, в том числе на топливно-энергетические ресурсы и железнодорожные перевозки.
Цементное производство является одним из наиболее энергоемких, рост затрат на газ и электроэнергию приводит к существенному увеличению себестоимости производства цемента. Значительный рост тарифов, в свою очередь, снижает денежный поток и может негативно сказаться на платежеспособности и кредитоспособности предприятий, усложняет финансирование программы модернизации и во многом препятствует своевременной реализации проектов.
Для решения задачи импортозамещения в цементной промышленности одним из основополагающих факторов становится внедрение современных передовых технологий в строительстве. Реалии формирования цифровой экономики диктуют необходимость применения современных, в том числе аддитивных технологий, в промышленности. Самый известный пример применения аддитивных технологий – 3D-принтеры.
Применение 3D-принтеров в строительстве – мировая практика, позволяющая использовать новые материалы и технологии, уменьшающие до 40% себестоимость строительства и увеличивающие до 50% их эффективность, что делает жилье более качественным и доступным. Примечательно, что российское оборудование занимает лидирующие позиции не только на отечественном рынке, но и завоевывает мировое признание.
Решая задачу модернизации цементных предприятий, российская промышленность строительных материалов обеспечивает стабильный спрос на отечественное оборудование, технологии, материалы, формирует потребность в высокопрофессиональных специалистах, обладающих инженерными и управленческими компетенциями в области проектирования, строительства и эксплуатации цементных предприятий
Как производится цемент
Портландцемент является основным ингредиентом бетона. Бетон образуется, когда портландцемент образует пасту с водой, которая связывается с песком и камнем, чтобы затвердеть.
Цемент производится с помощью тщательно контролируемого химического соединения кальция, кремния, алюминия, железа и других ингредиентов.
Обычные материалы, используемые для производства цемента, включают известняк, ракушечник и мел или мергель в сочетании со сланцем, глиной, сланцем, доменным шлаком, кварцевым песком и железной рудой.Эти ингредиенты при нагревании при высоких температурах образуют каменное вещество, которое измельчается в мелкий порошок, который мы обычно называем цементом.
Каменщик Джозеф Аспдин из Лидса, Англия, впервые изготовил портландцемент в начале XIX века, сжигая порошкообразный известняк и глину в своей кухонной плите. Этим грубым методом он заложил основу отрасли, которая ежегодно буквально перерабатывает горы известняка, глины, цементной породы и других материалов в порошок, настолько мелкий, что он может проходить через сито, способное удерживать воду.
Лаборатории цементных заводов проверяют каждый этап производства портландцемента путем частых химических и физических испытаний. Лаборатории также анализируют и тестируют готовый продукт, чтобы убедиться, что он соответствует всем отраслевым спецификациям.
Самый распространенный способ производства портландцемента — сухой. Первым шагом является добыча основного сырья, в основном известняка, глины и других материалов. После добычи порода дробится. Это включает в себя несколько этапов.Первое дробление уменьшает размер камня до максимального размера около 6 дюймов. Затем порода поступает на вторичные дробилки или молотковые дробилки для измельчения примерно до 3 дюймов или меньше.
Дробленая порода смешивается с другими ингредиентами, такими как железная руда или летучая зола, измельчается, смешивается и подается в цементную печь.
Цементная печь нагревает все ингредиенты примерно до 2700 градусов по Фаренгейту в огромных стальных цилиндрических вращающихся печах, облицованных специальным огнеупорным кирпичом. Обжиговые печи часто достигают 12 футов в диаметре — достаточно большого размера, чтобы вместить автомобиль, и во многих случаях больше, чем высота 40-этажного здания.Большие печи устанавливаются с небольшим наклоном оси от горизонтали.
Тонко измельченное сырье или суспензия подается в верхний конец. В нижней части находится ревущий взрыв пламени, произведенный точно контролируемым сжиганием порошкообразного угля, нефти, альтернативных видов топлива или газа с принудительной тягой.
По мере того, как материал движется через печь, определенные элементы уносятся в виде газов. Остальные элементы объединяются, образуя новое вещество, называемое клинкером.Клинкер выходит из печи в виде серых шариков, размером с мрамор.
Клинкер выгружается раскаленным из нижнего конца печи и обычно доводится до рабочей температуры в различных типах охладителей. Нагретый воздух из охладителей возвращается в печи, что позволяет сэкономить топливо и повысить эффективность горения.
После охлаждения клинкера цементные заводы измельчают его и смешивают с небольшим количеством гипса и известняка. Цемент настолько мелкий, что в 1 фунте цемента содержится 150 миллиардов зерен.Теперь цемент готов к транспортировке компаниям по производству товарного бетона для использования в различных строительных проектах.
Хотя сухой процесс является наиболее современным и популярным способом производства цемента, в некоторых печах в США используется мокрый процесс. Эти два процесса по сути схожи, за исключением мокрого процесса, когда сырье измельчается с водой перед подачей в печь.
Вопросы и ответы: Почему выбросы цемента имеют значение для изменения климата
Если бы цементная промышленность была страной, она была бы третьим по величине источником выбросов в мире.
В 2015 году он произвел около 2,8 млрд тонн CO2, что эквивалентно 8% от общемирового объема — больше, чем у любой другой страны, кроме Китая или США.
Использование цемента будет расти, поскольку глобальная урбанизация и экономическое развитие увеличивают спрос на новые здания и инфраструктуру. Наряду с другими частями мировой экономики цементной промышленности необходимо будет резко сократить выбросы, чтобы достичь целей Парижского соглашения в области температурного режима. Однако пока достигнут лишь ограниченный прогресс.
Снижение выбросов от цемента. Инфографика Розамунд Пирс для Carbon Brief.
Что такое цемент?
Цемент используется в строительстве для связывания других материалов. Его смешивают с песком, гравием и водой для производства бетона, самого широко используемого строительного материала в мире. Ежегодно используется более 10 миллиардов тонн бетона.
Промышленным стандартом является портландцемент. Он был изобретен в начале 1800-х годов и назван в честь строительного камня, широко использовавшегося в то время в Англии.Сегодня он используется в 98% бетона во всем мире, при этом ежегодно производится 4 миллиарда тонн.
Производство портландцемента, который действует как связующее, является важным этапом в производстве портландцемента. Известняк (CaCO3) «кальцинируется» при высоких температурах в цементной печи с образованием извести (CaO), что приводит к выбросу углекислого газа. В целом происходит следующая реакция:
Почему цемент выделяет столько CO2?
Около половины выбросов цемента — это технологические выбросы, возникающие в результате вышеуказанной реакции.Это основная причина, по которой выбросы цемента часто трудно сократить: поскольку этот CO2 выделяется в результате химической реакции, его нельзя устранить путем замены топлива или повышения эффективности.
Еще 40% выбросов цемента происходит от сжигания ископаемого топлива для нагрева обжиговых печей до высоких температур, необходимых для этого процесса обжига. Последние 10% выбросов приходится на топливо, необходимое для добычи и транспортировки сырья.
Таким образом, выбросы цемента в значительной степени зависят от доли клинкера, используемого в каждой тонне цемента.Вид топлива и эффективность оборудования, используемого при производстве клинкера, также имеют значение.
Между тем, согласно прогнозам, в ближайшие 40 лет площадь зданий в мире увеличится вдвое. Это означает, что производство цемента должно вырасти примерно до 5 миллиардов тонн к 2030 году, что на 25% больше, чем сегодня, и в четыре раза превысит уровень 1990 года.
Таким образом, одного повышения эффективности будет недостаточно для значительного сокращения выбросов в этом секторе.
Какие страны имеют высокие выбросы цемента?
Китай, безусловно, является крупнейшим производителем цемента, за ним с большим отрывом следуют Индия и страны ЕС вместе взятые, как показано на графике ниже из недавнего отчета Chatham House.Три четверти производства цемента с 1990 года приходилось на Китай, где в период с 2011 по 2013 год было использовано больше цемента, чем в США за весь ХХ век.
Производство цемента и выбросы с 2010 по 2015 год. Источник: Анализ Olivier et al. (2016) от Chatham House.
В Китае также наблюдается высокий уровень производства цемента в расчете на душу населения, поскольку он переживает быструю урбанизацию, когда многие люди переезжают в высотные или малоэтажные здания из цемента. Однако потребление в Китае может быть близким к стабилизации.
Напротив, потребление в Индии должно значительно возрасти, поскольку она, в свою очередь, быстро урбанизируется и строит инфраструктуру. Ожидается, что наибольший рост в будущем произойдет в Индии и на других развивающихся рынках.
Мужчина поднимает поддон с цементом на строительные леса, Пенджаб, 2011 г. Фото: imageBROKER / Alamy Stock Photo.
По данным Chatham House, в Европе существующие печные мощности способны удовлетворить будущий спрос на цемент. Он добавляет, что европейские производители цемента также являются одними из самых продвинутых в использовании альтернативных видов топлива.Однако более старое оборудование отстает от Индии и Китая по энергоэффективности.
Аналогичным образом, США, четвертый по величине потребитель цемента, отстают от других крупных производителей по показателям энергоэффективности и соотношению клинкера.
Снизились ли выбросы цемента?
По данным Chatham House, средняя интенсивность выбросов CO2 при производстве цемента — выбросы на тонну произведенной продукции — снизилась на 18% во всем мире за последние несколько десятилетий. Однако выбросы в секторе в целом значительно выросли, а с 1990 года спрос увеличился втрое.
На данный момент прогресс достигнут по трем основным направлениям. Во-первых, более эффективные печи для обжига цемента сделали производство менее энергоемким. Это может еще больше улучшиться: среднее глобальное потребление энергии на тонну цемента по-прежнему примерно на 20% выше, чем производство с использованием современных наилучших доступных технологий и практики.
Во-вторых, использование альтернативных видов топлива также снизило выбросы — например, использование биомассы или отходов вместо угля. По словам Chatham House, это особенно актуально в Европе, где сейчас около 43% потребления топлива приходится на альтернативные виды топлива.
В-третьих, сокращение доли портландского клинкера в цементе также привело к сокращению выбросов. По данным Chatham House, цемент с высоким содержанием смеси может снизить выбросы на килограмм до четырех раз. Клинкер можно заменить другими цементоподобными материалами, включая отходы от сжигания угля и сталеплавильного производства. Однако это может повлиять на свойства цемента, поэтому подходит только для некоторых конечных целей.
Среднее мировое соотношение клинкера (клинкер: цемент) упало до 0,65 в 2014 году с большим диапазоном от 0.57 в Китае до 0,87 в Евразии.
По данным Международного энергетического агентства (МЭА), после нескольких десятилетий прогресса удельный вес цемента в цементе с 2014 по 2016 год мало изменился. Это связано с тем, что повышение энергоэффективности было компенсировано небольшим увеличением доли клинкера, говорится в сообщении.
Тем не менее, общие выбросы цемента в последние годы не изменились или снизились, так как спрос в Китае стабилизировался.
BioMason использует бактерии для выращивания цементных кирпичей, которые, по ее словам, могут связывать углерод.Предоставлено: bioMASON, Inc.
.Насколько можно сократить выбросы цемента?
МЭА и отраслевая инициатива по устойчивому развитию цемента (CSI) недавно выпустили новую дорожную карту с низким уровнем выбросов углерода, показывающую, как они считают, что выбросы могут быть сокращены в соответствии со сценарием «2C» и сценарием «ниже 2C». Дорожная карта предполагает, что к 2050 году спрос на цемент вырастет на 12-23%.
Для сценария 2 ° C — в соответствии с 50% вероятностью ограничения роста глобальной температуры до 2 ° C по сравнению с доиндустриальным уровнем к 2100 году — в дорожной карте говорится, что необходимо сокращение выбросов цемента на 24%.(Стоит отметить, что это не соответствует Парижскому соглашению, которое требует, чтобы повышение температуры оставалось как минимум «значительно ниже» 2 ° C.)
Дорожная карта основана на четырех направлениях действий по сокращению выбросов.
Три из них — это стратегии, которые ранее использовались цементной промышленностью для ограничения выбросов, а именно: повышение энергоэффективности, топливо с низким уровнем выбросов и более низкое соотношение клинкера.
Например, дорожная карта устанавливает целевое среднее глобальное соотношение клинкера, равное 0.60 к 2050 году по сравнению с 0,65. Это серьезная проблема: Chatham House отмечает, что к 2050 году ему потребуется примерно на 40% больше заменителей клинкера, чем сегодня, в то время, когда доступность традиционных заменителей — летучей золы и доменного шлака -, вероятно, начнет падать.
Четвертая область — это «инновационные технологии», что по сути является сокращением для сокращения выбросов с помощью улавливания и хранения углерода (CCS). Это еще не использовалось в цементной промышленности (испытания стержней), но дорожная карта предполагает, что интеграция CCS в цементном секторе достигнет коммерческого внедрения к 2030 году.Неуверенность в возможности быстрого расширения масштабов CCS и его высокая стоимость являются основными препятствиями на пути его использования для сокращения выбросов бетона.
На диаграмме ниже показан анализ Chatham House дорожной карты цемента МЭА и CSI. Красная пунктирная линия показывает сокращение выбросов на 24% в соответствии со сценарием 2C (2DS) к 2050 году.
Способы сокращения выбросов цемента, ведущие к «парижскому» пути. Показаны три сценария: «сценарий эталонной технологии» (RTS), «сценарий 2C» (2DS) и «сценарий за пределами 2C» (B2DS).Источник: Анализ Chatham House Технологической дорожной карты IEA и CSI (2018).
В дорожной карте также изложен сценарий «за пределами 2C» (B2DS; фиолетовая пунктирная линия выше), в соответствии с которым потребуется гораздо большее сокращение выбросов на 60%. В этой дорожной карте говорится, что доля общих выбросов углекислого газа от цемента, улавливаемых CCS, должна увеличиться более чем вдвое по сравнению со сценарием 2C, до 63% в 2050 году. Он отмечает, что этого «будет сложно достичь».
Chatham House также отмечает, что потребуется более резкое сокращение, «если предположения о вкладе технологий CCS окажутся оптимистичными».Там написано:
«Переход за пределы 2DS потребует преобразовательных действий в отношении замещения клинкера, новых цементов и CCS, а также внедрения ряда подходов со стороны спроса за пределами сектора для снижения общего потребления. Они также становятся более важными, если CCS окажется слишком сложным для масштабирования ».
Могут ли «новые» цементы сократить выбросы?
Некоторые компании изучали «новые» цементы, которые полностью исключают необходимость в портлендском клинкере. Если бы они могли соперничать с портландцементом по стоимости и характеристикам, они бы предложили способ значительного сокращения выбросов.
Однако ни один из них еще не получил широкого коммерческого использования и в настоящее время используется только в нишевых приложениях. Более того, инновации в этом секторе, как правило, сосредоточены на постепенных изменениях, как показывает глобальный патентный поиск Chatham House, с ограниченным вниманием к новым цементам.
Цементы на основе геополимеров, например, были предметом исследований с 1970-х годов. В них не используется карбонат кальция в качестве ключевого ингредиента, они затвердевают при комнатной температуре и выделяют только воду. Zeobond и banahUK входят в число фирм, производящих их, и обе заявляют о сокращении выбросов примерно на 80-90% по сравнению с портландцементом.
Есть также несколько фирм, разрабатывающих цементы с углеродным отверждением, которые поглощают CO2, а не воду, по мере затвердевания. Если абсорбция CO2 может быть выше, чем CO2, выделяемый во время их производства, цементы потенциально могут использоваться в качестве поглотителя углерода.
Шлакоблок Solidia Concrete ™. Кредит: Solidia
.Американская фирма Solidia, например, заявляет, что ее бетон выделяет до 70% меньше CO2, чем портландцемент, включая этот этап секвестрирования. В настоящее время компания сотрудничает с крупным производителем цемента LafargeHolcim.
Точно так же британский стартап Novacem — отделение от Имперского колледжа Лондона — заявил в 2008 году, что замена портландцемента его «углеродно-отрицательным» продуктом позволит отрасли стать чистым поглотителем выбросов CO2. Однако фирме не удалось собрать достаточно средств для продолжения исследований и производства.
Другие фирмы используют совершенно другие материалы для производства цемента. Например, стартап Biomason из Северной Каролины использует бактерии для выращивания цементных кирпичей, которые, по его словам, не менее сильны, чем традиционная кладка и улавливают углерод.
В приведенной ниже таблице, предоставленной Chatham House, обобщены этапы развития нескольких альтернативных технологий производства цемента.
Цементы низкоуглеродистые на разных этапах инновационного цикла. Источник: Chatham House (2018).
Какие препятствия на пути к низкоуглеродистому цементу?
Есть несколько причин, по которым низкоклинкерные или новые цементы до сих пор не получили широкого распространения.
Эти технологии менее апробированы, чем портландцемент, который веками использовался в строительстве.Это приводит к сопротивлению со стороны потребителей цемента, особенно в секторе, который по очевидным причинам склонен ставить безопасность во главу угла. Многие из этих новых технологий также недостаточно зрелы, чтобы получить широкое распространение.
Альтернативы также имеют более ограниченное применение, что означает, что может не быть единственной замены портландцементу. Поэтому их использование означало бы отход от предписывающих стандартов. В настоящее время почти все стандарты, нормы проектирования и протоколы испытаний цементных вяжущих и бетона основаны на использовании портландцемента, отмечает Chatham House.Добавляет:
«Новые подходы и особенно новые отраслевые стандарты требуют длительного обсуждения и тестирования. Например, для утверждения и внедрения нового стандарта в ЕС могут потребоваться десятилетия ».
Однако недавние достижения в области испытаний материалов для бетона могут позволить лучше понять его химический состав, что даст больше уверенности для корректировки отраслевых стандартов.
Альтернативные цементы также должны быть в состоянии конкурировать с портландцементом по стоимости, особенно при отсутствии сильного нормативного или политического давления, такого как цены на углерод.Но переход может потребовать инвестиций в новое оборудование или более дорогие материалы, которые могут окупиться через несколько лет, говорит Chatham House.
Доступ к достаточному количеству сырья, необходимого для производства некоторых цементов, также является важным фактором. Например, местная доступность летучей золы — побочного продукта сжигания угля и одного из наиболее часто используемых заменителей клинкера — уменьшается по мере закрытия угольных электростанций.
Можно ли снизить спрос на цемент?
Снижение спроса на цемент также может помочь ограничить выбросы, особенно в развивающихся странах.Например, Chatham House подчеркивает, как в городских конструкциях, основанных на системе «капиллярной сети» и идущих вместо автомобилей, можно использовать на треть меньше бетона. Точно так же принципы готических соборов были использованы для проектирования современных бетонных полов, которые на 70% легче обычных.
Использование концепции «экономики замкнутого цикла», позволяющей повторно использовать модульные части зданий, также может сыграть свою роль, так же как и продление срока службы инфраструктуры. Китай, например, подвергся критике за строительство новых некондиционных зданий, которые могут простоять только 25–30 лет, прежде чем будут снесены.
Бетонные ступени, образующие часть морской стены и морской защиты на пляже Блэкпул. Предоставлено: Manor Photography / Alamy Stock Photo.
Бетон в зданиях также можно заменить древесиной, что потенциально позволяет улавливать и хранить CO2. Некоторые новые типы инженерной древесины, например, поперечно-клееный брус, открывают больше возможностей для строительства. Однако экономия углерода при использовании в зданиях древесины, а не стали и бетона, не гарантируется.
Старый бетон также можно измельчить и повторно использовать в таких проектах, как дорожные работы.Однако бетон потеряет свои связывающие свойства, если не будет произведен новый клинкер.
Регулируются ли выбросы цемента?
Цемент часто считается слишком сложным для декарбонизации, наряду с другими секторами, такими как авиация и сталь. Как отмечалось в одном из недавних отчетов, если выбросы цемента вообще упоминаются в публичных дебатах, «обычно следует отметить, что с ними мало что можно сделать».
В результате цементная промышленность столкнулась с меньшим политическим и коммерческим давлением по сравнению с энергетическим сектором, сказал Феликс Престон Carbon Brief.Престон — старший научный сотрудник Chatham House и соавтор отчета по цементу. Он говорит, что в этом секторе по-прежнему доминирует горстка крупных фирм, контролирующих значительную часть рынка. Престон добавляет:
«[Эти фирмы] часто являются доминирующими или очень влиятельными в географическом регионе, а также на мировой арене. Я думаю, что из-за этого было трудно — и до сих пор трудно — добиваться радикальных перемен. Они не обязательно видят немедленный стимул к амбициозным действиям.”
ЕС считает, что цемент подвергается значительному риску утечки углерода, что означает, что он получает бесплатные квоты в Системе торговли выбросами ЕС (EU ETS). В преддверии реформ EU ETS 2017 года комитет по окружающей среде Европейского парламента (ENVI) безуспешно предложил прекратить это бесплатное распределение. По словам Chatham House, введение минимальных цен на углерод, рассматриваемое в нескольких странах-членах ЕС, может повлиять на сектор.
Китайская ETS, как ожидается, будет расширяться за счет цемента, хотя она будет охватывать только электроэнергетический сектор на своем первом этапе.
Принимает ли цементная промышленность меры?
В рамках CSI производители, на которые приходится 30% мирового производства цемента, около двух десятилетий работали вместе над инициативами в области устойчивого развития, включая сокращение выбросов. На Парижской конференции по климату группа объявила о планах сократить свои коллективные выбросы на 20-25% к 2030 году. Это будет уровень амбиций, аналогичный описанному выше сценарию «ниже 2 ° C».
Всемирная цементная ассоциация (WCA) тем временем разрабатывает «План действий по борьбе с изменением климата», который будет опубликован в конце этого месяца.Современные технологии могут обеспечить только половину экономии CO2, необходимой для достижения цели 2C Парижского соглашения, как недавно предупредила АВП на своем «Форуме по глобальному изменению климата» в Париже. Членская база АВП составляет более миллиарда тонн годовой мощности по производству цемента.
Всемирная цементная ассоциация (WCA) призывает членов отрасли активизировать усилия по быстрому и масштабному внедрению новых технологий, чтобы сократить выбросы CO2, чтобы эффективно помочь в борьбе с изменением климата.#cement #sustainability #ClimateAction https://t.co/RUgEzIF1DC pic.twitter.com/PQHbl1EBT7
— World Cement Assoc. (@WorldCemAssoc) 5 июля 2018 г.
Недавно созданная Глобальная ассоциация цемента и бетона (GCCA) также хочет улучшить экологические показатели этого сектора. Он должен приступить к работе по устойчивому развитию, проделанной CSI в январе 2019 года.
Несколько цементных фирм также уже ввели внутреннюю цену на углерод или планируют ее ввести.
Линии публикации из этой истории
Производство цемента — обзор
6.5 Использование дополнительных вяжущих материалов для сокращения выбросов CO
2 и связываниеПроизводство цемента является одним из крупнейших источников выбросов CO 2 . SCM частично или полностью использовались в качестве замены цемента или мелких заполнителей в строительстве, чтобы снизить потребность в цементе и соответствующие выбросы CO 2 (Al-Harthy et al., 2003; Бабу и Кумар, 2000; Бондарь и Коакли, 2014; Cheng et al., 2005; Цзя, 2012; Хан и Сиддик, 2011 г .; Кунал и др., 2012; Лимбахия и Робертс, 2004; Лотенбах и др., 2011; Маслехуддин и др., 2009; Наджим и др., 2014; Ночая и др., 2010; Сиддик, 2011; Сиддик и Беннасер, 2012; Toutanji et al., 2004). Некоторыми из установленных SCM являются летучая зола, микрокремнезем, доменный шлак, стальной шлак и т. Д. Пуццолановые материалы, такие как летучая зола, стальной шлак и цементная пыль (CKD), при использовании в качестве замены цемента, улучшают долговечность Срок действия бетона, так как пуццолановая реакция требует времени.Но прочность SCM в раннем возрасте вызывает беспокойство, поскольку уменьшение содержания цемента вызывает меньшую гидратацию и, как следствие, меньшее образование геля CSH (Lothenbach et al., 2011). Проблема низкой ранней прочности SCM может быть решена путем отверждения карбонизацией в раннем возрасте.
Помимо секвестрации CO 2 , карбонизирующее отверждение также действует как механизм активации SCM (Monkman et al., 2018). Многие исследования пытались оценить влияние ACC на использование SCM (Monkman and Shao, 2006; Sharma and Goyal, 2018; Zhan et al., 2016; Zhang et al., 2016; Чжан и Шао, 2018). ACC не только увеличивает степень гидратации альтернативных вяжущих материалов, но также улучшает характеристики бетона в раннем возрасте. Монкман и Шао (2006) оценили карбонизацию доменного шлака, летучей золы, шлака электродуговой печи (ЭДП) и извести. Все четыре материала реагировали по-разному при отверждении карбонизацией в течение 2 часов. Летучая зола и известь показали самую высокую степень карбонизации, за ней следовали шлак EAF, тогда как измельченный гранулированный доменный шлак (GGBS) показал наименьшую реакционную способность по отношению к CO 2 .Кальцит был основным продуктом реакции летучей золы, извести и шлака EAF, тогда как арагонит был получен карбонизацией GGBS. Sharma и Goyal (2018) изучали влияние ACC на цементные растворы, изготовленные с использованием CKD в качестве замены цемента. Было обнаружено, что ACC улучшает прочность цементных растворов в раннем возрасте на 20%, даже для растворов с более высоким содержанием CKD. В нескольких исследованиях была предпринята попытка оценить способность стальных вяжущих для шлака улавливать CO 2 (Bonenfant et al., 2008; He et al., 2013; Huijgen et al., 2005; Huijgen and Comans, 2006; Ukwattage et al., 2017). Присутствие компонента C 2 S в стальном шлаке делает его потенциальным вяжущим материалом, который может действовать как поглотитель углерода для связывания CO 2 (Johnson et al., 2003).
Zhang et al. (2016) в своем исследовании обнаружили, что бетон из летучей золы более реактивен к CO 2 по сравнению с бетоном из OPC. С уменьшением содержания ОРС образовалась пористая микроструктура из-за недостаточной реакции гидратации.Увеличенное расстояние между зернами цемента способствовало более высокой вероятности реакции с CO 2 и, следовательно, более высокой степени связывания CO 2 . Характеристики SCM, подвергнутых отверждению карбонизацией, в значительной степени зависят от тонкости материала и посткарбонизации от содержания воды. Более мелкий размер частиц SCM обеспечивает более высокую удельную площадь для эффективной реакции карбонизации. В связи с этим во многих исследованиях было замечено, что бетон, изготовленный с использованием SCM, имел лучшую реактивность по отношению к CO 2 , чем OPC (Monkman and Shao, 2006).Посткарбонизация содержания воды также играет доминирующую роль в определении производительности SCM. Посткарбонизация с достаточным содержанием воды необходима для полной гидратации и пуццолановой реакции SCM (Monkman and Shao, 2006).
Производство цемента | Американское литейное общество
Что такое портландцемент?
Многие путают термины «цемент» и «бетон». Портландцемент — это промышленный продукт, который входит в состав различных бетонных изделий.Портландцемент продается в виде мелкодисперсного порошка, который смешивают с водой и заполнителями, чтобы получить портландцементный бетон (PCC). Портландцемент состоит из силикатов кальция, алюминатов кальция, алюмоферритов кальция и обычно небольшого количества гипса. Когда в цемент добавляется вода, минералы кальция гидратируются и образуют гель. Этот гель скрепляет заполнитель в бетоне.
Существует восемь типов портландцементов, каждый из которых имеет особые свойства и химические требования. Однако производственный процесс по сути тот же и является продуктом работы печи.Производство цемента — это двухэтапный процесс. Такие материалы, как известняк, содержащий оксид кальция, смешиваются с кремнеземом и глиноземными материалами, такими как песок, сланец или глина. Сырье обычно сушится и измельчается, а затем смесь нагревается во вращающейся печи с образованием клинкера. Затем клинкер смешивают с гипсом и другими материалами и измельчают до мелкого порошка (сито 200 меш), известного как портландцемент.
Как литейный песок используется при производстве портландцемента?
Литейный песок считается «альтернативным материалом», который может заменить первичное сырье.Сырье, используемое при производстве портландцемента, должно содержать соответствующие пропорции оксида кальция, кремнезема, глинозема и оксида железа. Смеси портландцемента обычно содержат 10-12% диоксида кремния по весу и оксидов алюминия и железа (2-5% по весу). Эти минеральные компоненты являются важными компонентами большинства формовочных песков, поэтому они могут заменять первичные минералы. Согласно исследованию, проведенному в 2008 году Портлендской цементной ассоциацией, 13 из цементных печей страны получали формовочный песок. Измельченный ваграночный шлак также может быть использован в качестве сырья для производства цемента.
Как портландцемент работает с литейным песком?
Портландцемент, изготовленный с использованием формовочного песка, соответствует всем требованиям к качеству и характеристикам портландцемента, изготовленного исключительно из первичных материалов. Исследование Американского литейного общества показало, что портландцемент, изготовленный из формовочного песка, может иметь более высокую прочность на сжатие, чем портландцемент, изготовленный из обычного сырья.
Литейный песок используется в качестве исходного сырья при производстве портландцемента.Различные типы портландцемента имеют разные химические и физические требования из-за различного использования цемента. Стандарт ASTM C-150, Стандартные спецификации для портландцемента, обозначает различные типы портландцемента.
Какие технические проблемы связаны с формовочным песком при производстве портландцемента?
Химическая консистенция формовочных песков более важна, чем физические характеристики при определении пригодности для производства портландцемента.Содержание кремнезема в формовочном песке превышает минимальное 80% -ное содержание кремнезема, которое требуется для обжига портландцемента, и наличие других элементов, таких как железо и алюминий, является преимуществом. Содержание глины в формовочном песке может быть проблемой, если она создает проблемы с сыпучестью в цементных печах с процессами смешивания влажного сырья.
Хотя формовочный песок может быть отличным сырьем для производства портландцемента, расстояния транспортировки могут быть препятствием для поиска большего количества формовочного песка для печей для обжига портландцемента.В Соединенных Штатах всего 118 цементных печей, некоторые из которых владеют соседними карьерами, где известняк и другие первичные заполнители перерабатываются для производства цемента.
Существуют ли какие-либо конкретные проблемы обеспечения / контроля качества, о которых необходимо знать поставщикам и / или конечным пользователям?
Просеянный формовочный песок может быть желательным сырьем для производства цемента, если расстояния транспортировки не препятствуют его использованию. Системы подачи печи предназначены для работы с крупнозернистыми материалами, а просеянный формовочный песок уже является мелким заполнителем.Это означает, что использование формовочного песка позволяет избежать затрат и воздействия на окружающую среду, связанных с измельчением другого сырья.
Литейный песок, предназначенный для цементной печи, должен быть просеян, чтобы на нем не было мусора, торцов керна, постороннего металла и посторонних материалов. В частности, посторонний металл может повредить системы подачи печи. Стыки керна можно измельчать и смешивать с другими песчаными потоками, если сохраняется химическая консистенция. Следует избегать использования формовочного песка из силиката натрия, поскольку этот конкретный тип связующего изменяет химический состав цемента.Самым большим препятствием для увеличения использования формовочного песка в производстве цемента является получение необходимого количества просеянного песка на постоянной основе.
Существуют ли какие-либо особые экологические проблемы, связанные с использованием литейного песка в портландцементе?
Ассоциация портландцемента разработала программу по повышению устойчивости производства и использования портландцемента. Использование формовочного песка в процессе производства портландцемента помогает создать более экологичный продукт.Для удовлетворения спроса на портландцемент требуется огромное количество сырья, содержащего известь, кремнезем, глинозем и оксид железа. Производство цемента — это очень энергоемкая промышленная деятельность. В дополнение к сокращению использования первичного материала, использование формовочного песка позволяет экономить энергию за счет исключения добычи, дробления и измельчения первичного сырья до размера зерна.
Щелкните по ссылкам ниже, чтобы получить дополнительные ресурсы и информацию о цементе.
Портлендская цементная ассоциация
http: // www.цемент.org/manufacture/
• Производство цемента в США и мире в 2020 г.
• Производство цемента в США и мире в 2020 г. | StatistaДругая статистика по теме
ЦементПожалуйста, создайте учетную запись сотрудника, чтобы иметь возможность отмечать статистику как избранную. Затем вы можете получить доступ к своей любимой статистике через звездочку в заголовке.
ЗарегистрироватьсяПожалуйста, авторизуйтесь, перейдя в «Моя учетная запись» → «Администрирование».После этого вы сможете отмечать статистику как избранную и использовать персональные статистические оповещения.
АутентифицироватьСохранить статистику в формате .XLS
Вы можете загрузить эту статистику только как премиум-пользователь.
Сохранить статистику в формате .PNG
Вы можете загрузить эту статистику только как премиум-пользователь.
Сохранить статистику в формате .PDF
Вы можете загрузить эту статистику только как премиум-пользователь.
Показать ссылки на источники
Как премиум-пользователь вы получаете доступ к подробным ссылкам на источники и справочной информации об этой статистике.
Показать подробные сведения об этой статистике
Как премиум-пользователь вы получаете доступ к справочной информации и сведениям о выпуске этой статистики.
Статистика закладок
Как только эта статистика будет обновлена, вы сразу же получите уведомление по электронной почте.
Да, сохранить в избранном!
…и облегчить мою исследовательскую жизнь.
Изменить параметры статистики
Для использования этой функции вам потребуется как минимум Одиночная учетная запись .
Базовая учетная запись
Познакомьтесь с платформой
У вас есть доступ только к базовой статистике.
Эта статистика не учтена в вашем аккаунте.
Единая учетная запись
Идеальная учетная запись начального уровня для индивидуальных пользователей
- Мгновенный доступ к статистике 1 м
- Скачать в формате XLS, PDF и PNG
- Подробные справочных материалов
$ 59 39 $ / месяц *
в первые 12 месяцев
Корпоративный аккаунт
Полный доступ
Корпоративное решение, включающее все функции.
* Цены не включают налог с продаж.
Самая важная статистика
Самая важная статистика
Самая важная статистика
Самая важная статистика
Дополнительная статистика
Узнайте больше о том, как Statista может поддержать ваш бизнес .
Геологическая служба США. (5 февраля 2021 г.).Производство цемента в США и во всем мире с 2010 по 2020 год (в миллионах метрических тонн) [График]. В Statista. Получено 25 мая 2021 г. с сайта https://www.statista.com/statistics/219343/cement-production-worldwide/
US Geological Survey. «Производство цемента в США и во всем мире с 2010 по 2020 год (в миллионах метрических тонн)». Диаграмма. 5 февраля 2021 года. Statista. По состоянию на 25 мая 2021 г. https://www.statista.com/statistics/219343/cement-production-worldwide/
Геологическая служба США.(2021 год). Производство цемента в США и во всем мире с 2010 по 2020 год (в миллионах метрических тонн). Statista. Statista Inc. Дата обращения: 25 мая 2021 г. https://www.statista.com/statistics/219343/cement-production-worldwide/
Геологическая служба США. «Производство цемента в США и во всем мире с 2010 по 2020 годы (в миллионах метрических тонн)». Statista, Statista Inc., 5 февраля 2021 г., https://www.statista.com/statistics/219343/cement-production-worldwide/
Геологическая служба США, производство цемента в США и во всем мире с 2010 по 2020 гг. (В миллионов метрических тонн) Statista, https: // www.statista.com/statistics/219343/cement-production-worldwide/ (последнее посещение — 25 мая 2021 г.)
Закладка фундамента для производства безуглеродистого цемента
Как ключевой компонент бетона, цемент является неотъемлемой частью нашей повседневной жизни. Фактически, это второй по потреблению продукт в мире после питьевой воды, и он используется почти во всем, что мы строим — от домов и городских пейзажей до дамб и плотин. В то же время он также является основным источником глобальных выбросов CO 2 .
Как ученые, так и правительства призывают к ужесточению требований к выбросам парниковых газов (ПГ), поскольку последствия изменения климата становятся все более очевидными. Недавно стойка ворот сместилась с поддержания повышения температуры ниже 2,0 градусов по Цельсию на 1,5 градуса по Цельсию, причем более 77 градусов по Цельсию. страны обязались к 2050 году добиться нулевых выбросов. Давление на отрасль усугубляет пандемия COVID-19, которая сильно ударила по отрасли, подрывая спрос из-за неопределенности относительно того, насколько глубоким будет спад и сколько времени займет восстановление.
Хотя неясно, как будут развиваться дебаты по климату, достижение этих целей к 2050 году будет особенно сложной задачей для цементной промышленности, поскольку большая часть ее выбросов CO 2 возникает в результате неизбежного химического процесса, известного как кальцинирование. В отличие от других отраслей, которые могут развиваться дальше, разработка новых технологий обезуглероживания цемента может не масштабироваться в течение многих лет. Тем не менее, наши исследования показывают, что в принципе отрасль может сократить выбросы на уровне 2017 года более чем на три четверти к 2050 году.
Учитывая его эксплуатационные характеристики и широкую доступность известняка, цемент (и, следовательно, бетон), вероятно, останется основным строительным материалом во всем мире. Однако на местном уровне он может уступить долю более устойчивым альтернативным материалам, таким как поперечно-клееная древесина (CLT). Другие изменения, в том числе более широкое информационное моделирование зданий (BIM) и модульное строительство, могут еще больше снизить потребление цемента, эффективно сокращая спрос, несмотря на общий рост строительной активности.Таким образом, рост и декарбонизация представляют собой серьезные взаимосвязанные проблемы. Как это ни парадоксально, но COVID-19 может ускорить реакцию отрасли на эти фундаментальные структурные тенденции. По мере того, как игроки решают проблемы неопределенного спроса, у них есть возможность изменить стратегии: определить лучший путь к декарбонизации, оценить цифровые и технологические достижения, в которые можно инвестировать, и переосмыслить свои продукты, портфели, партнерские отношения и методологии строительства — области, которые мы исследуем позже. .У дальновидных игроков может быть возможность совершить скачок и стать лидерами отрасли.
Изменение климата и цементная промышленность: исходный уровень
Только на цементную промышленность приходится около четверти всех промышленных выбросов CO 2 , а также на нее приходится наибольшее количество выбросов CO 2 на доллар дохода (Иллюстрация 1). Около двух третей этих общих выбросов возникает в результате кальцинирования, химической реакции, которая происходит, когда сырье, такое как известняк, подвергается воздействию высоких температур.
Приложение 1
Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Напишите нам по адресу: [email protected]Цемент действует как связующее звено между заполнителями (мелкими и крупными породами) при формировании бетона. В то время как цемент составляет лишь небольшой процент смеси (примерно 12 процентов по объему), он почти исключительно ответственен за образующиеся выбросы CO 2 .В процессе производства цемента сырье нагревается до высоких температур в печи в топливоемком процессе, известном как пиропроцессинг (Иллюстрация 2). В результате получается клинкер, небольшие комки каменных остатков, которые измельчаются в порошок и объединяются с другими ингредиентами для производства цемента.
Приложение 2
Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами.Напишите нам по адресу: [email protected]Давление на цементную промышленность по декарбонизации резко возросло не только со стороны общества, но также со стороны инвесторов и правительств. Фактически, сейчас правительства все чаще запрашивают оценку воздействия на окружающую среду, прежде чем принимать решение о выделении средств. По мере того, как общественное внимание к выбросам CO 2 увеличивается, остается риск того, что цементные игроки могут быть «пристыжены», как в прошлом нефтегазовые или горнодобывающие компании.
Возможные пути обезуглероживания
У компаний есть несколько вариантов обезуглероживания цемента. Оптимистично, наш анализ показывает, что выбросы CO 2 могут быть сокращены на 75 процентов к 2050 году (Иллюстрация 3). Однако лишь небольшая часть (около 20 процентов) будет обеспечено за счет операционных достижений, а оставшаяся часть — за счет технологических инноваций и новых горизонтов роста.
Приложение 3
Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту.Если вам нужна информация об этом контенте, мы будем рады работать с вами. Напишите нам по адресу: [email protected]Операционные достижения, такие как меры по повышению энергоэффективности, уже в значительной степени реализованы, а потенциал сокращения выбросов за счет использования альтернативных видов топлива и замены клинкера ограничен сокращающейся доступностью исходных материалов. Поэтому для достижения целей по сокращению выбросов углерода к 2050 году необходимы более инновационные подходы, такие как новые технологии и альтернативные строительные материалы.Тем не менее, наиболее многообещающие рычаги с точки зрения потенциала сокращения выбросов все еще находятся в разработке и были опробованы или реализованы только в небольшом масштабе (см. Врезку «Глубокое погружение в рычаги декарбонизации»).
Поскольку разработка таких технологий, как улавливание, использование и хранение углерода (CCUS) и углерод-отвержденный бетон, может занять до десяти лет, инвестиции должны быть сделаны как можно скорее. Наша кривая затрат на сокращение выбросов (Иллюстрация 4) оценивает затраты на несколько крупномасштабных инвестиций для снижения одной тонны CO 2 (на основе предполагаемых будущих затрат, цен на CO 2 и объемов сокращения выбросов).Отрицательные затраты на сокращение выбросов — например, для заменителей клинкера — предполагают выгоду для производителя, а не снижение затрат.
Приложение 4
Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Напишите нам по адресу: [email protected]Затраты на борьбу с выбросами указывают диапазоны, так как точная цена товаров зависит от региона и доступности в будущем.Например, по мере того, как сталелитейный и энергетический секторы активизируют свои усилия по обезуглероживанию, доступность заменителей клинкера, таких как пылевидная топливная зола (летучая зола) и гранулированный шлак, будет уменьшаться. То же самое и с биомассой, спрос на которую, вероятно, будет расти в других отраслях.
Из-за того, что затраты на снижение выбросов по некоторым рычагам превышают цены на CO 2 , производители цемента сталкиваются с дилеммой: общественность и финансовые инвесторы требуют быстрого снижения выбросов, даже если для этого нет экономического обоснования.Мало того, что экономика кажется далекой от звездной, но и требуемые инвестиции должны быть направлены на меры по снижению затрат для производителей цемента, чтобы сохранить свою долю стоимости в более широкой строительной отрасли.
В целом ожидается, что будущие выбросы CO 2 в 2050 году будут соответствовать мировому спросу, немного увеличившись до 2,9 ГтCO 2 (Иллюстрация 5). Региональные различия сохранятся, и потенциал их сокращение будет варьироваться в зависимости от региона из-за подходов к регулированию, характерных для конкретной страны, различных потребностей в потреблении и разных уровней, на которых местные отрасли реализуют меры по декарбонизации.
Приложение 5
Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Напишите нам по адресу: [email protected]Например, Китай выиграет от снижения спроса (примерно на 45 процентов), и следует ожидать, что в ближайшие десятилетия для декарбонизации потребуются как производственные достижения, так и технологические инновации.Юго-Восточная Азия и Индия начали разработку политики, направленной на содействие усилиям по декарбонизации. В 2012 году правительство Индии представило рыночный механизм повышения энергоэффективности, в котором более Участвуют 85 цементных заводов. Однако урбанизация и экономическое развитие в этих регионах, а также связанный с этим рост спроса могут свести на нет эти усилия.
Хотите узнать больше о нашей химической практике?Контроль со стороны инвесторов и давление со стороны регулирующих органов с целью сокращения выбросов углерода на рынках Европы и Северной Америки, вероятно, усилится.Амбициозная «зеленая сделка» Европейского союза и исчерпывающий пакет мер, включая введение механизма корректировки углеродных границ для цемента, могут сократить выбросы углерода во всем регионе. В Северной Америке усилия по декарбонизации поддерживаются в рамках государственных и национальных инициатив, таких как реализация в Канаде в 2019 году программы поддержки цен на выбросы углерода.
Следующая норма: переосмысление цементной промышленности
Обезуглероживание цементной промышленности требует решения двух стратегических задач.Во-первых, компаниям необходимо будет определить наилучшие пути к декарбонизации за счет операционных достижений и технологических инноваций, а также новых горизонтов роста. Во-вторых, им нужно будет разработать портфель для нового горизонта роста, который использует возможности в цепочке создания стоимости «устойчивого строительства».
Операционные авансы
Опираясь на десятилетия усилий по повышению эффективности, традиционные рычаги борьбы с выбросами могут сократить выбросы примерно на одну пятую к 2050 году.Промышленность может добиться этого сокращения за счет использования большего количества заменителей клинкера, снижения энергоемкости за счет более эффективного использования оборудования и повышения эффективности оборудования. Рекуперация отработанного тепла (побочный продукт машин или процессов, использующих энергию) также может обеспечить безуглеродное электричество.
Еще один рычаг повышения эффективности — расширенная аналитика. Один европейский производитель цемента добился 6-процентной экономии топлива за счет создания самообучающихся моделей теплового профиля печи и оптимизации формы и интенсивности пламени печи.Будущие цементные заводы могут обойти конкурентов, сочетая цифровые технологии и более устойчивые операции. Наконец, внедрение альтернативных видов топлива, таких как отходы и биомасса, для замены ископаемого топлива, многолетняя тенденция в отрасли, может сократить выбросы почти на 10 процентов к 2050 году.
Все это будет непросто. Предложение биомассы варьируется в зависимости от региона, и другие отрасли соперничают за них. Заменители клинкера тоже ограничены. Природные пуццоланы (например, вулканические породы и пепел) еще не были оценены в масштабе.А побочные промышленные продукты, которые служат альтернативой клинкеру, такие как летучая зола от угольных электростанций и шлак от сталелитейных доменных печей, могут быть в меньшем количестве, поскольку электроэнергетика и сталелитейная промышленность обезуглероживают и производят меньше отходов.
Технологические инновации
Инновации будут иметь решающее значение для достижения потенциала устойчивости цементной промышленности, и уже появляются многообещающие направления. Например, на одном пусковом предприятии в цементе используется меньшая доля известняка, что приводит к меньшим технологическим выбросам и выбросам топлива; В процессе этой компании также блокируется дополнительный CO 2 , который добавляется до того, как бетон затвердеет.Добавление CO 2 делает бетон более прочным и снижает количество необходимого цемента. В бетоне с углеродным отверждением также может использоваться CO 2 , захваченный во время производства цемента. Современные методы могут улавливать до 5 процентов CO 2 , образующегося в процессе производства, но более новые технологии могут улавливать 25-30 процентов. Такие продукты, как углекислый бетон, при ином позиционировании, могут получить «экологическую премию», потенциально давая компаниям преимущество среди экологически сознательных покупателей и большую ценовую политику.
На горизонте — технологии CCUS. Хотя они часто являются дорогостоящими и, возможно (на данный момент) более подходящими для производства более дорогостоящих продуктов, таких как сталь, а не цемент, к 2050 году они могут более чем вдвое сократить выбросы. Ряд пилотных проектов по улавливанию углерода после сжигания ведется крупными компаниями по производству цемента. Другие компании тестируют сжигание кислородного топлива, многообещающую, но дорогую технологию, которая приводит к высоким концентрациям CO 2 в дымовых газах, что, в свою очередь, позволяет практически полностью улавливать углерод.
В конечном итоге, использование технологий и инноваций потребует дополнительных инвестиций, а также изменения мышления компаний, которые слишком привыкли к существующему статус-кво. Многие производители цемента не привыкли полагаться на партнерские отношения или работать в экосистемах, которые являются второй натурой в других отраслях. При сроках инноваций от пяти до десяти лет эти компании вскоре могут догнать.
Новые горизонты роста
Устойчивое развитие в конечном итоге может стать катализатором, который подталкивает отрасль к поиску роста за счет новых бизнес-моделей, партнерства и подходов к строительству.Бетон на основе цемента останется предпочтительным строительным материалом во всем мире, но цепочки создания стоимости «устойчивого строительства», вероятно, возникнут на региональном и местном уровнях, что потребует переориентации многих корпоративных портфелей.
В Соединенном Королевстве, например, переработанный материал из отходов строительства и сноса все чаще используется для замены заполнителей в бетоне. Производители цемента не спешат использовать эту возможность, передав бизнес по переработке мусора местным строительным компаниям.Между тем, на других рынках традиционный цемент может конкурировать с улучшенным вариантом — энергетически модифицированным цементом (ЭМС), который выделяет меньше углерода и требует меньше энергии для производства. EMC уже использовался (в сочетании с традиционным цементом) для множества проектов в Техасе.
Другие возможности выходят за рамки цемента и бетона. Альтернативные строительные материалы и другие подходы, вероятно, будут играть важную роль в декарбонизации цементной промышленности, хотя остается большая неопределенность в отношении того, насколько они сократят выбросы.Например, CLT уже используется на ряде рынков и пользуется репутацией экологически чистого материала. Если примерно 10 процентов цемента будет заменено на CLT, выбросы углерода сократятся до 750 миллионов тонн ежегодно (около 2 процентов глобальных выбросов).
Дополнительные новые пулы стоимости включают сборные и модульные корпуса, которые включают производство за пределами площадки, и BIM. Большая прозрачность означает меньше отходов и, вероятно, уменьшение количества необходимого цемента или бетона.Действительно, цифровые технологии одновременно поддерживают усилия цементной промышленности по декарбонизации и способствуют ее росту.
Начало работы
Компании, которые надеются возглавить усилия отрасли по декарбонизации, должны определить лучший путь вперед, следовать правильным технологическим достижениям и переосмыслить свои продукты, портфолио и партнерские отношения. При этом принятие решений об инвестициях в текущие активы останется сложной задачей. Возможные решения включают построение кривой снижения выбросов, создание различных сценариев и создание дорожной карты, которая позволяет принимать решения на основе результатов различных сценариев.
Двойная систематическая оценка вариантов декарбонизации может обеспечить прозрачность существующих рычагов и ускорить внедрение инноваций в сотрудничестве с другими отраслями или секторами. Это включает в себя оценки для конкретных предприятий и создание тепловых карт и кривых снижения выбросов, а также оценку партнерства местных экосистем со стартапами, другими участниками производственно-сбытовой цепочки или государственными учреждениями.
Климатическая математика: как пройти путь на 1,5 градусаЧтобы понять изменения в пулах стоимости, участники рынка цемента должны разработать видение будущего целевого портфеля и последствий для бизнес-модели, чтобы уловить ценность устойчивых строительных решений.Промышленность останется местным бизнесом; следовательно, сохраняется необходимость создания этого перспективного микрорынка за счет микрорынка. Исходя из этого, результаты должны быть расширены, а сквозные возможности, такие как устойчивый бетон, должны быть приоритетными.
Однако успех такой стратегии зависит от способности лидеров добиться изменения мышления в масштабах всей организации, которое способствует переосмыслению нынешнего образа работы. Поэтому лидерам следует подумать о лучших способах поощрения всей организации в их пути к декарбонизации.
Производители цемента приближаются к моменту истины. Вызовы, такие как декарбонизация, постоянный сбой в цепочке создания стоимости и конкуренция со всей лоскутной структурой строительной экосистемы, становятся все более серьезными. При правильном мышлении декарбонизация и переосмысление могут идти рука об руку: так же, как автопроизводители все чаще рассматривают свою роль как обеспечение мобильности, а не просто производство автомобилей, цементные компании могут также заниматься бизнесом, предлагая строительные решения. Поскольку давление на климат увеличивается, а продажи традиционного цемента и бетона сталкиваются с угрозами, сочетание нового мышления, инноваций и новых бизнес-моделей будет иметь решающее значение для обеспечения прибыльного и более экологичного будущего.
Производители цемента разрабатывают план по сокращению выбросов CO2
Одна из крупнейших отраслей промышленности в мире — и ведущий производитель выбросов парниковых газов — может, наконец, предпринять шаги по борьбе с изменением климата.
Всемирная цементная ассоциация недавно провела свой первый в истории глобальный форум по изменению климата, на котором лидеры отрасли и ученые обсудили стратегии сокращения выбросов углекислого газа в отрасли. Это поможет разработать план действий по борьбе с изменением климата, который АВП намеревается выпустить в сентябре, направленный на определение путей производства низкоуглеродистого цемента.
«Глобальный форум по изменению климата ясно показал важность стимулирования инноваций, если мы хотим иметь хоть какую-то надежду на достижение парижских климатических целей», — сказал Бернар Матье, директор программы по изменению климата АВП.
В то время как отрасли всех видов изучают способы сокращения выбросов углекислого газа, цементная промышленность — как бы неприглядно это ни звучало — является одной из наиболее важных сторон, желающих присоединиться к дискуссии.
Цемент — это наиболее широко используемый из существующих искусственных материалов — он образует бетон при смешивании с водой и используется при строительстве всего: от зданий и мостов до дорог, тротуаров и всех видов другой инфраструктуры.
Но хотя цемент во многом сформировал современную застроенную среду, он также является огромным источником углекислого газа в атмосферу. По оценкам Международного энергетического агентства, на его долю в одиночку приходится около 7 процентов всех глобальных выбросов углерода. Это делает ее вторым по величине промышленным эмитентом в мире, уступая только черной металлургии.
Этой проблеме часто уделяется мало внимания общественности. Но беспокойство среди ученых растет.По некоторым оценкам, по мере роста мирового населения к 2050 году производство цемента может вырасти на целых 23 процента. И некоторые эксперты предполагают, что, если промышленность существенно не сократит свои выбросы, это может поставить под угрозу глобальные климатические цели Парижского соглашения.
В апрельском отчете МЭА и отраслевой инициативы Cement Sustainability Initiative отмечается, что отрасль в ее нынешнем виде несовместима с траекториями, которые позволили бы миру достичь целевой температуры в 2 градуса Цельсия.Достижение этой цели, как говорится в отчете, «предполагает значительно более активные усилия по сокращению выбросов от производителей цемента».
Гонка за решениями
Портландцемент— наиболее широко используемый тип цемента во всем мире и продукт, указанный во многих современных строительных нормах — был запатентован почти 200 лет назад и стал важным компонентом строительной среды. По словам Гаурава Сэнта, профессора гражданской и экологической инженерии Калифорнийского университета в Лос-Анджелесе, с тех пор в производственном процессе мало что изменилось.
«Произошли улучшения в эффективности процессов, но в целом это не так уж и много», — сказал он E&E News.
Это большая проблема для климата, потому что в процессе выделяется большое количество углекислого газа. Огромный углеродный след отрасли отчасти объясняется ее высокими потребностями в топливе, которые в основном удовлетворяются за счет ископаемого топлива. Но более половины его выбросов — а по некоторым оценкам, возможно, целых две трети — на самом деле происходит от самого процесса химического производства, в результате которого выделяется большое количество углекислого газа в качестве побочного продукта.
Портландцемент производится в основном из известняка, типа горной породы, состоящей в основном из химического соединения, называемого карбонатом кальция. По словам эксперта по гражданской и экологической инженерии Клэр Уайт из Принстонского университета, для производства липкого связующего цемента известняк должен быть нагрет до высоких температур — около 1500 ° C.
Сам по себе интенсивный процесс нагрева, отметила она, требует огромного количества топлива. Но это также вызывает химическое разложение известняка, оставляя после себя соединение, называемое оксидом кальция, которое используется в конечном цементном продукте, выделяя углекислый газ в атмосферу.
Конкретная формула, используемая для цемента, и тот факт, что она оставалась неизменной в течение столь длительного времени, делает отрасль необычайно сложной, когда дело доходит до борьбы с изменением климата. В комментарии, опубликованном в прошлом месяце в журнале Science , оценивались различные услуги и процессы, которые «трудно обезуглерожить». В нем отмечается, что решение проблемы цемента не имеет единого решения — для этого потребуются различные подходы, включая серьезные изменения как в используемых материалах, так и в самом производственном процессе.
В последние годы проблема привлекла внимание крупных международных организаций, некоторые из которых в настоящее время консультируют промышленность о способах сокращения выбросов углекислого газа. Апрельский отчет МЭА содержал дорожную карту низкоуглеродных технологий, направленную на сокращение выбросов цементной промышленности на 24 процента к 2050 году. В отчете излагаются различные стратегии, которые могут помочь в достижении этой цели — все, от альтернативных видов топлива до технологий улавливания углерода и новых химических рецептов для сам цементный продукт.
Исследовательские группы по всему миру уже занимаются многими из этих проблем.Некоторые группы работают над химическими формулами, которые уменьшили бы количество «клинкера» — вещества, которое требует нагревания известняка, — который попадает в цемент.
Уайт, инженер из Принстона, возглавляет университетскую группу по устойчивому производству цемента, которая работает над способами полного устранения потребности в клинкере. Она отметила, что для производства цементоподобных продуктов вместо этого можно использовать другие вещества, в том числе переработанные побочные продукты из других отраслей, такие как стальной шлак, летучая зола от угольных предприятий или определенные типы глин.Обработка этих веществ специальными химическими соединениями, известными как щелочи, «может сделать порошки реактивными, — сказал Уайт, — и мы можем сформировать аналогичные строительные блоки на молекулярном уровне по сравнению с бетоном из портландцемента».
Тем не менее, есть некоторые споры о том, сколько именно углерода связано с активированными щелочами цементами, добавила она, что иногда затрудняет сравнение с портландцементом. Это частично зависит от того, какой именно тип источников щелочи и в каком количестве используется в процессе, и как далеко должны быть отправлены материалы.По некоторым оценкам, эта практика может снизить выбросы на 40–80 процентов по сравнению с портландцементом, сказал Уайт.
Другие исследователи используют другую тактику. Сант, инженер Калифорнийского университета в Лос-Анджелесе, участвует в исследовательской группе, разрабатывающей продукт, который они назвали «CO2NCRETE». Этот процесс основан на «повторном использовании углерода» — использовании выбросов CO2, полученных в результате промышленной деятельности, для производства цементоподобного и потенциально углеродно-нейтрального строительного материала. Сант говорит, что процесс CO2NCRETE уникален тем, что он позволяет использовать уловленные выбросы углерода как есть, без необходимости дополнительной обработки.
Другие эксперты отметили, что бетон естественным образом поглощает углекислый газ. Это медленный процесс, но в течение десятилетий он может поглотить значительное количество выбросов, которые он выбрасывает в атмосферу, в первую очередь, в результате процесса нагрева известняка.
В статье, опубликованной в 2016 году в журнале Nature Geoscience , говорится, что бетон в мире поглощает около 43 процентов этих первоначальных выбросов. Сэнт отметил, что могут быть некоторые способы ускорить или усилить этот процесс поглощения — это область, на которой сосредоточена его собственная исследовательская группа.
Стивен Дэвис, специалист по земным системам из Калифорнийского университета в Ирвине, один из авторов статьи Nature Geoscience , а также комментария Science на прошлой неделе, отметил, что способность бетона к поглощению подразумевает, что могут быть способы сделать производство цемента отрицательным для углерода.
Если бы все предприятия по производству цемента были оснащены, например, технологиями улавливания и хранения углерода, то значительный объем выбросов, производимых на месте, мог бы не попасть в атмосферу.Позже произведенный бетон будет впитывать еще больше углекислого газа, что в конечном итоге может привести к «чистому выбросу из атмосферы», — сказал он E&E News.
В то время как различные исследовательские группы фокусируются на разных подходах, технологическая дорожная карта МЭА предполагает, что достаточно быстрое сокращение выбросов для достижения глобальных климатических целей потребует различных стратегий, работающих вместе. По мнению Уайта, это, вероятно, самый удачный подход.
«Могут быть лидеры в том, что может помочь или что мы можем использовать в ближайшем будущем, но это не значит, что нам не следует искать более инновационные материалы в будущем», — сказала она.«Это не просто одна технология, на которую нам нужно обратить внимание, чтобы бороться с проблемами устойчивости, связанными с бетонной промышленностью».
Долгая дорога впереди
Несмотря на растущий интерес к исследованиям и разработкам, существуют препятствия для внедрения решений. Одна из них — отсутствие политических стимулов, чтобы убедить производителей цемента инвестировать в новые технологии.
«Что касается крупных производителей, мне не ясно, насколько это большой приоритет», — сказал Дэвис.«У меня еще нет ощущения, что они считают, что это рынок для потенциальных сбоев».
Ограничения на выбросы или системы установления цен на выбросы углерода — одни из наиболее часто обсуждаемых решений. Тем не менее, даже там, где такие рамки существуют, могут возникнуть проблемы.
В прошлом Система торговли выбросами Европейского Союза подвергалась критике за предоставление бесплатных квот на выбросы углерода крупным загрязнителям, включая производителей цемента. В недавнем отчете CDP, британской организации, которая выступает за прозрачность воздействия корпораций на окружающую среду, отмечалось, что «углеродное регулирование для этого сектора остается мягким, при этом сектор в Европе продолжает получать выгоду от бесплатных излишков квот.В отчете говорится, что цены на углерод, возможно, потребуется вырасти в три-шесть раз, чтобы стимулировать внедрение улавливания углерода и других инновационных технологий.
Есть и другие проблемы. Сант отметил, что цементная промышленность — очень консервативный сектор, и не без оснований. Строительство основной инфраструктуры, такой как здания и мосты, вызывает большие опасения по поводу безопасности и большое беспокойство по поводу внедрения новых, менее проверенных материалов.
«Поскольку мы использовали этот материал столько времени, сколько у нас есть, он вызывает большое доверие пользователей», — сказал Сант.Это могло сделать отрасль более устойчивой к инновациям, чем другие.
Государственные регулирующие органы могут быть столь же консервативными, когда дело касается строительных норм. По словам Уайта, в США, Европе и многих других развитых странах эти коды обычно основаны на химии портландцемента. Использование другого продукта для строительного проекта, вероятно, потребует одобрения соответствующего регулирующего органа, что не всегда может быть легко получить.
«В этой области ведется активная работа, чтобы попытаться предоставить информацию, необходимую организациям, занимающимся кодексами, о том, как они могут дополнить коды, чтобы обеспечить больше инноваций в строительных материалах», — сказала она.Это означает, что есть необходимость в новых идеях о том, как снизить выбросы в отрасли, одновременно показывая, что эти новые продукты безопасны.
В то время как интерес к исследованиям растет, в частном секторе пока наблюдается прогресс, но он может быть медленным.
В недавнем отчетеCDP была проведена оценка готовности 13 крупнейших мировых цементных компаний к переходу на низкоуглеродные технологии. Это говорит о том, что выбросы компаний сокращаются в среднем примерно на 1 процент в год.Но в нем отмечается, что этого вряд ли достаточно, чтобы идти в ногу с траекториями, соответствующими цели по климату 2 ° C. В отчете также указывается, что доля инвестиций в исследования и разработки в продажах невысока по сравнению с другими отраслями.
Тем не менее, недавний форум Всемирной цементной ассоциации по изменению климата может указывать на то, что промышленность начинает настаивать на дополнительных действиях. А разнообразие подходов, которые изучают эксперты, могут облегчить дорогу.