3Д принтер применение: Технологии 3D-печати и их применение

Содержание

Технологии 3D-печати и их применение

Введение

3D-печатные протезы рук. Источник: motorica.org

Первое, с чем сталкиваются все начинающие 3D-печатники, это необходимость разобраться в существующих технологиях 3D-печати, выяснить, чем они отличаются, какие материалы используют и какие выгоды предлагают. К примеру, в чем разница между технологиями FDM и SLS, или как EBM отличается от DMLS?

Разобраться во всех этих аббревиатурах ох как непросто, а непосвященный человек вообще подумает, что все эти словечки — названия новых направлений в музыке. В нашей статье мы на пальцах объясним принцип каждой из двенадцати рассмотренных технологий 3D-печати и надеемся, что это поможет вам найти идеальный 3D-принтер для ваших уникальных потребностей.

Содержание​

Технология FDM/FFF

PICASO 3D Designer XL

Аббревиатуры расшифровываются как Fused Deposition Modeling (FDM) и Fused Filament Fabrication (FFF) и обозначают моделирование трехмерного объекта методом послойного наложения расплавленной полимерной нити (или методом моделирования путем направления). Принцип работы обеих технологий идентичен, разница исторически есть, но сейчас она фактически лишь в коммерческих названиях. Подробнее об этом вы можете прочитать здесь.

Принцип работы FDM/FFF

Реализация технологии FDM/FFF следующая: филамент (нить твердого термопластичного материала) проталкивается через накаленное до нужной температуры сопло эструдера, расплавляясь в процессе. Принтер наносит материал на печатный стол согласно запрограммированной траектории, слой за слоем. На печатном столе филамент остывает и затвердевает, образуя твердый объект.

Принтеры, печатающие по технологии FDM/FFF, поддерживают такие материалы, как PLA, ABS, PET, TPU и множество других.

Источник: Amazon.com

Плюсы и минусы FDM/FFF

Плюсы:

  • Возможность печатать несколькими цветами и материалами одновременно;
  • Дешевизна, по сравнению с другими технологиями 3D-печати;
  • Удобство использования, подходит для начинающих 3D-мейкеров;
  • Большое количество поддерживаемых материалов;
  • Отсутствие необходимости в постобработке напечатанного изделия;
  • Высокая скорость печати;
  • Низкая стоимость технического обслуживания;
  • Компактный дизайн FDM принтеров.

Минусы:

  • Видимый шов между слоями
  • При печати нависающих частей необходимо создание поддержек
  • Колебания температуры во время печати могут привести к расслоению 

Как работает 3D принтер: объяснение на простых примерах

 
3D-печать распространена повсеместно. Она позволяет создать что угодно — от прототипов всевозможных изделий, до функциональных частей реактивных двигателей самолетов и космических аппаратов, от канцелярских принадлежностей и автозапчастей, до шоколадок и сувениров.

Но, как именно работают 3D-принтеры, как они создают трехмерные объекты любой возможной формы — знают еще не все. Если вы хоть раз задавались этими вопросами, то перед вами — самое простое объяснение 3D-печати.

Общие принципы 3D-печати


Принцип 3D-печати по любой существующей технологии — создание объемных объектов из совокупности плоских слоев.

Цифровая модель изделия разделяется на слои специальной программой — слайсером, а принтер печатает эти слои, один на другом, составляя из них трехмерный объект. Так, из множества слоев, получается объемная деталь.

Общий принцип один, но технологии различаются; самая распространенная и доступная среди них — FDM.

FDM

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.


Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.



 

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.
 

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.

 


Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.
 

 
FDM-принтер на примере MakerBot Replicator 2


 
Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.


От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.


 

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости.
Происходит засветка источником света принтера.
Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

   

SLA-принтер на примере Formlabs Form 2


SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.


DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

DLP-принтер на примере SprintRay MoonRay S

SLS

Главное преимущество технологии перед FDM и SLA — SLS-печать не требует создания поддерживающих структур, ведь материалом поддержки служит окружающий модель материал — это позволяет печатать изделия любой формы, с любым количеством внутренних полостей, и заполнять ими весь рабочий объем принтера. SLS-принтеры работают с широким спектром материалов, а их принты прочнее, чем большинство напечатанных FDM или стереолитографией.


Благодаря прочностным характеристикам, напечатанные на SLS-принтерах детали могут использоваться в практических целях, а не только как прототипы и декоративные элементы.

Для создания объекта аппарат направляет лазер на слой мелкофракционного порошка, сплавляя частицы друг с другом для формирования слоя изделия. Затем, устройство рассыпает следующую порцию порошка на поверхность готового слоя и разравнивает его, а лазер расплавляет, создавая следующий слой изделия. Процедура повторяется до тех пор, пока печать не будет завершена.

Есть у SLS-принтеров и минус — их стоимость. Они очень дороги, по сравнению с FDM и SLA/DLP. Это связано с ценой необходимых для такой печати высокоэнергетических лазеров. В принципе, стоимость даже самых дешевых SLS-принтеров

Область применения и перспективы 3D принтеров

Постепенно технологии 3D печати входят в нашу жизнь, открывая новые возможности в самых разных областях деятельности. 3D печать позволяет создать трехмерную модель какого-то изделия на компьютере и за считанное время получить полноценный физический объект, соответствующим заданным параметрам. Преимущества использования современных 3D принтеров очевидны:  снижение себестоимости изготовления продукции и сокращение сроков ее появления на рынке, моделирование элементов любой формы и сложности, быстрота и высокая точность изготовления, возможность использования разных материалов. В ближайшие годы снижение стоимости 3D принтеров должно открыть новые перспективы для реализации трехмерной печати.

Печать в 3D

Печать в 3D формате уже получает самое широкое распространение. Можно выделить несколько областей, где начинают активно применяться трехмерные принтеры:

— Быстрое прототипирование и машиностроение

В области промышленного производства для проектирования новой продукции всегда требуется создание моделей – прототипов будущей продукции. Для этих целей применяются такие традиционные способы, как механическая обработка и литье. На изготовление прототипа обычно уходят недели или даже месяцы кропотливой работы. Это весьма дорогостоящий и трудоемкий этап производства.

Трехмерные принтеры позволяют существенно убыстрить весь процесс – можно получать готовые прототипы практически одним нажатием кнопки. В результате, вне зависимости от технических характеристик изделия его можно создать за считанные минуты или часы. Тем самым, экономятся ресурсы и время. Особенно это актуально для машиностроения и многих других областей промышленного производства.

Благодаря использованию трехмерных принтеров сокращается время на конструкторские работы, гораздо более оперативно принимается решение о запуске изделия в серию. Созданный при помощи 3D печати макет помогает обнаружить недочеты в конструкции еще на этапе разработки. Важно, что принтер дает возможность изготовить столько макетов или отдельных деталей, сколько необходимо для проектирования, а не сколько представляется возможным вследствие каких-либо производственных ограничений.

— Мелкосерийное производство 

Не меньшую пользу 3D печать может принести и в мелкосерийном производстве, то есть при изготовлении небольших партий изделий или эксклюзивной продукции. В частности, трехмерные принтеры уже применяются в ювелирной промышленности для создания отдельных восковых моделей, по которым впоследствии выполняется отливка готовых изделий, или эксклюзивных экземпляров продукции. Сегодня появилась возможность быстро создавать модели украшений, спроектированных в программе. Только при трехмерной печати вместо воска задействуется специальный материал, по своим характеристикам сопоставимый с воском. Помимо ювелирных изделий, 3D печать может использоваться для изготовления сувениров и игрушек, причем с различной цветностью и текстурой. Также с помощью 3D принтеров можно создавать объемные карты с точными ландшафтными рельефами.

— Медицина 

Одна из самых интересных областей применения современных технологий трехмерной печати – это, конечно, медицина. Ведь в этой сфере трехмерная печать может помочь спасти человеческие жизни. Здесь есть несколько вариантов использования  принтеров формата 3D. Например, в стоматологии при помощи 3D печати уже можно получать протезы и коронки за более короткое время, чем при использовании традиционной технологии производства. Кроме того, 3D принтеры могут воспроизвести точную копию отдельных частей человеческого тела или всего скелета для эффективного обучения медиков, либо отработки приемов в преддверии сложных операций.

Также технологии 3D печати начинают применяться уже для создания отдельных живых органов с целью замены тех, что оказались повреждены в человеческом организме. В частности, в 2011 году успешной оказалась попытка ученых создать живую человеческую почку. Причем для ее «выращивания» устройству потребовалось три часа. В качестве материала обычно используется биомасса с высоким содержанием стволовых клеток. Сам факт возможности изготовления живых органов обеспечивает огромные возможности для медицины. Еще одна сфера применения 3D принтеров в медицине – это конструирование специальных медицинских инструментов под заказ для каждого пациента в соответствии с его заболеванием и анатомическими особенностями.

— Архитектура

Технологии трехмерной печати позволяют создавать архитектурные макеты зданий, сооружений, отдельных районов города и коттеджных поселков с соответствующей инфраструктурой. Использование 3D принтера дает возможность получить полноцветный макет с высокой детализацией, после чего специалисты могут проанализировать его достоинства и недостатки задолго до начала строительных работ. Как правило, для печати таких масштабных макетов применяют гипсовый композит, что снижает себестоимость изготовления.

Впрочем, область применения трехмерной печати может не ограничиваться лишь созданием архитектурных макетов – уже создана уникальная система трехмерной печати для работы с большими строительными объектами, основанная на принципе работы обычного строительного крана. Предполагается, что с помощью подобной системы в будущем можно будет строить или «печатать» дома или целые поселки за считанные часы.

— Образование

Применение трехмерной печати в сфере образования дает возможность легко и быстро получать разнообразные наглядные пособия для учащихся, которые могут распространяться в средних и высших учебных заведениях. Оснащение 3D принтерами учебных заведений может поспособствовать увеличению отдачи от образовательного процесса и быстрому усвоению материала учениками. Благодаря трехмерной печати студенты могут работать с реальными физическими моделями, всячески манипулируя ими. Практически любые макеты или наглядные пособия можно  нарисовать на компьютере в программе, после чего воплотить их в жизнь.

— Дизайн и производство одежды

3D печать находит свое применение в сфере высокой моды и дизайна. С помощью трехмерных принтеров дизайнеры могут быстро разрабатывать модели или эксклюзивные изделия. Некоторые модельеры уже освоили это направление и представляют свои коллекции одежды, отпечатанной на 3D принтере. Например, на парижской Неделе высокой моды модельер Айрис Ван Херпен уже представил такую уникальную коллекцию под названием «Напряжение». Впрочем, одежду, отпечатанную на принтере, пока можно увидеть только на модных вечеринках и показах. Однако можно сказать, что внедрение этой технологии в массовое производство не за горами.

Вероятно, что в будущем можно будет напечатать себе новые штаны или модный вечерний наряд, не выходя из дома. Технологии трехмерной печати используются не только при создании дизайна вещей, изготовлении одежды или обуви. Трехмерные принтеры позволяют создавать тестовые варианты упаковки продукции, в частности, парфюмерных флаконов или бутылочек самой интересной формы. В данном случае преимущества использования 3D печати на лицо: клиент может подержать готовую упаковку в своих руках, оценить ее дизайн со всеми элементами, включая фирменные знаки и этикетки, пощупать фактуру.

Итак, 3D печать не перестает будоражить умы людей, открывая перед собой все новые горизонты. Правда, относительно перспектив трехмерной печати и ее влияния на жизнь человека существует два противоположных мнения. Оптимисты полагают, что с обеспечением доступности 3D принтеров человечество ждет настоящий технологический прорыв. Любые вещи можно будет изготовить либо собственными усилиями, либо по индивидуальным заказам, не прибегая к помощи крупных корпораций. 3D принтеры придут в каждый дом и станут таким же неотъемлемым атрибутом повседневной жизни человека, как телевизор или стиральная машина.

Для изготовления широкого спектра продукции понадобится только сам принтер и различные материалы к нему. Решится проблема поиска или злоупотребления дешевой рабочей силой на производстве. Развитие технологии 3D печати приведет к закрытию многих промышленных предприятий, что обеспечит сокращение выбросов вредных газов в атмосферу.

Кроме того, от трехмерной печати ждут настоящего прорыва в медицине, где 3D принтеры уже в ближайшей перспективе должны будут обеспечить создание любого человеческого органа. Благодаря этому пациентам медицинских учреждений больше не придется  в течение многих лет стоять в очереди в ожидании необходимой им трансплантации.

Пессимисты же считают, что из-за трехмерной печати и возможности каждого человека распечатать необходимую ему вещь в домашних условиях мировая экономика окажется в жесточайшем кризисе. Сокращение промышленного производства может привести к тотальной безработице. Простаивающие промышленные предприятия будут приносить огромные убытки, как своим владельцам, так и государству. Технология трехмерной печати может создать огромную проблему и с защитой авторских прав. Ведь каждый человек сможет напечатать любое понравившееся ему изделие, не выплачивая никакой финансовой компенсации его автору.

Наконец, 3D печать может быть использована человеком не только на пользу, но и во вред себе. Например, для создания оружия. Такие прецеденты уже есть – не так давно появился первый в мире пистолет, отпечатанный на 3D принтере. Это пластиковая модель огнестрельного оружия, которая отнюдь не является игрушкой, ведь она действительно может стрелять. Таким образом, существует угроза того, что при наличии 3D принтера любой человек в будущем сможет наладить производство оружия у себя дома.

Только время покажет, какое из этих мнений окажется наиболее близким к реальности. Как бы то ни было, уже сейчас можно констатировать, что трехмерная печать становится все ближе к домашнему пользователю. С ее помощью можно будет реализовать свой творческий потенциал, создавая самые разнообразные изделия и макеты, не выходя из собственного дома.

10 преимуществ 3D-принтера: экономим время и деньги

3D-печать по сравнению с традиционными методами может оказаться гораздо более эффективной

Еще совсем недавно на 3D-печать смотрели как на что-то совершенное новое. Технология была развита недостаточно, аппаратная часть была слишком дорогой для широкого применения. Но прошло всего несколько лет, и ситуация радикальным образом изменилась. Мало того, что в магазинах стало появляться всё большое 3D-принтеров, так еще и некоторые энтузиасты принялись сами собрать эту технику.

 

1. Экономично

Несмотря на то, что крупномасштабные проекты с тысячами 3D-напечатнных деталей обходятся недешево, это всё же получается значительно выгоднее других технологий. Многие производители применяют 3D-печать для небольших тиражей или для создания прототипов. Пластик можно также использовать для литья, однако отливка малых партий может потребовать установки слишком дорогостоящего оборудования. Но и в этом случае производители могут изготавливать литые 3D-детали в несколько раз дешевле, чем при использовании алюминия.

Детали прототипа распечатаны на 3D-принтере Prusa i3 Bizon, высота слоя 0.1 мм, материал PLA


 

2. Более быстрый производственный цикл

3D-печать может существенно уменьшить время, затрачиваемое на каждый проект. По сравнению с традиционными методами производства, на весь процесс может потребоваться несколько недель или дней, а большая часть продукции печатается за часы. Некоторые производители даже стали изготавливать детали на заказ, что позволило им также оптимизировать складские возможности и схему управления ресурсами, сделав их более гибкими. При таком новом подходе производителю не требуется хранить каждую отдельную деталь или компонент, их можно просто по мере надобности печатать и сразу же пускать в дело.

 

Миниатюрные детали напечатанаы на фотополимерном 3D-принтере Wanhao Duplicator 7, высота слоя 0.5 мм, материал фотополимерная смола


 

3. Высокое качество

Контроль качества — один из самых важных аспектов любого производства. Он не только влияет на репутацию компании в своей отрасли, недостаточный технический контроль может привести к травмам работников и клиентов. Поскольку при 3D-печати применяется совершенно другой метод производства, чем в случае большинства операций, связанных с работой на станках, процесс имеет в целом значительно меньше слабых мест и изъянов.

Модель распечатана на 3D-принтере Picaso Designer X PRO, Слой 0,2 мм, материалы ABS, HIPS


 

4. Меньше отходов

В XXI веке всё больше внимания уделяется вопросам экологии, поэтому 3D-печать получает всё больше поддержки в лице сторонников «зеленого» движения. Поскольку при 3D-печати остается значительно меньше отходов, чем при традиционной обработке, эта технология позволяет более бережно относиться к окружающей среде, одновременно сокращая расходы. 3D-печать проникла даже в текстильную индустрию, позволяя печатать одежду и ее прототипы.

Детали для рулевого механизма яхты, распечатанные на 3D принтере Hercules Strong. Детали распечатаны за 15 часов 0.5 мм соплом и высотой слоя 0.3 мм при скорости 60 мм\с.


 

5. Большая кастомизация

Изготавливаемые с помощью 3D-печати изделия обладают также высокой степенью кастомизации. Детали могут быть напечатаны не только легким пластиком, некоторые модели следующего поколения могут иметь и металлическое покрытие. В результате объекты получаются не только эстетичными, но и функциональными. Кроме того, они могут приобретать термическую и химическую стойкость. Существующий метод металлизации может быть использован и для пластика.

 

Функциональные детали, печатались на Hercules. Материал ABS, сопло диаметром 0,5 мм, высота слоя 150 мкм, заполнение 100%. Модель состоит из 3-х частей: корпуса и 2-х половинок защелки, после печати и обработки детальки склеивались ацетоном.


 

6. Доступность для клиента

Если некоторые умельцы устраивают небольшие механические мастерские, например, в гаражах, то большинство из нас не может разрешить себе такую роскошь. 3D-печать позволяет перенести значительную часть производственного процесса непосредственно в дом, что стало возможным благодаря доступности 3D-техники пользовательского уровня. Несмотря на то, что она оказывается довольно дорогой для одноразовых проектов, цена на 3D-принтеры и расходные материалы стремительно снижается.

Технические барашки из REC RUBBER или REC FLEX. Модели напечатаны на 3D-принтере Prusa i3 Steel.


 

7. Высокая сложность 

В большинстве случаев, когда дело доходит до сложных деталей и элементов, производственный процесс накладывает определенные ограничения. Методы, применяемые при литье и доводке объектов, могут оказаться недостаточно тонкими для деталей изощренного дизайна. Процессы 3D-производства позволяют реализовать практически любое дизайнерское решение, независимо от его сложности, – причем, за приемлемое время. Это позволяет не только исключить дополнительные этапы сборки, которые требуются при традиционных методах, но и предоставляет больше свободы, позволяя создавать перспективные дизайнерские решения.

Печать больших деталей от макета двигателя на 3D-принтере Zenit


 

8. Меньше рисков

3D-печать нужна производителям, которые ходят идти в ногу с инновационными тенденциями XXI века. Притом что подобным новым технологиям свойственны определенные риски, в плане повседневного бизнеса при 3D-печати риски оказываются существенно ниже, чем при традиционных методах производства. 3D-печать не только значительно дешевле при обкатке нового дизайна или продукта, сами напечатанные прототипы способны подогреть интерес инвесторов и клиентов и заставить их указать, следует ли приступать к серийному выпуску изделия, стоит ли это требуемого времени и усилий.

Печать миниатюрной модели на на 3D-принтере Wanhao Duplicator i3


 

9. Разнообразие материалов

Материалы, используемые в современных 3D-принтерах, гораздо более разнообразны, чем большинство сырья при традиционных методах производства. 3D-печать предоставляет также возможность смешивать различные вещества – роскошь, которая не всегда доступна при привычных методах. Хотя многие производители 3D-принтеров предлагают собственный, весьма ограниченный набор исходников, 3D-принтеры могут работать не только с оригинальными материалами, позволяя симулировать керамику, металл, стекло и другое.

Образцы печати разными материалами: PEGT, ABS-PC, PLA, SBS на 3D-принтере Wanhao D6


 

10. Быстрое прототипирование

При создании детали или изделия для нового клиента важнейшую роль играет коммуникация. Производителю требуется не только четко понять, чего клиент хочет, производитель должен также уметь объяснить, что он сам может. Рисунки, схемы, диаграммы – это всё, конечно, хорошо, но нет ничего лучше реального прототипа, который можно подержать, посмотреть и изучить. Тот факт, что материалы стоят недорого, в совокупности с коротким временем создания прототипа на современных 3D-принтерах очень помогает на этапе прототипирования, поддерживая коммуникацию между всеми заинтересованными сторонами.


 

ПРОШЛОЕ, НАСТОЯЩЕЕ И БУДУЩЕЕ 3D-ПЕЧАТИ

Несмотря на сравнительно медленный старт, концепция 3D-печати стала наконец набирать обороты и популярность среди производителей и клиентов. Мы уже видим массу преимуществ 3D-печати, в том числе короткий производственный цикл, более сложный дизайн и улучшенное качество, а пик популярности и функциональности этой технологии еще только впереди.

3D принтеры. Виды и работа. Применение и технологии. Как выбрать

3D принтеры – это станки с числовым программным управлением, предназначенные для послойной печати объемных деталей. Создание объекта осуществляется по виртуальной трехмерной модели, параметры которой передаются на процессор устройства. Моделирование для печати осуществляется на специальном программном обеспечении.

Какие бывают 3D принтеры в зависимости от применяемого материала

Объемная печать может осуществляться различными материалами, что зависит от параметров принтера. От этого зависят эксплуатационные характеристики получаемых моделей.

Оборудование для объемной печати работает на следующих материалах:
  • Порошок.
  • Гипс.
  • Фотополимер.
  • Воск.
Порошковые принтеры

Данные устройства исходя от параметров детали установленных на чертеже наносят по периметру подставки связующее вещество. Поверх него укладывается порошок, после чего осуществляется спекание. Далее цикл повторяется. За один проход достигается подъем заготовки на миллиметры, поэтому процесс продолжительный особенно при создании крупных моделей. Неоспоримым преимуществом является то, что такие 3D принтеры могут работать с металлической пудрой.

Гипсовые устройства

Такой 3D принтер на самом деле может работать не только с гипсом, но и различными шпаклевками, и цементом. Этим оборудованием пользуются для создания статуэток, а также интерьерных украшений. Применяя такое устройство можно получать произведения искусства или модели, необходимые для создания силиконовых форм для отливки.

Фотополимерные принтеры

Это самые распространенные разновидности печатных устройств, которые имеют наиболее доступную стоимость. В продаже встречаются различные комплектующие для их сборки. Нередко подобные 3D принтеры изготовляются самостоятельно из самодельных и заводских деталей. Для заправки такого устройства применяется полимер, сделанный в виде длинной проволоки накрученной на катушку. Принтер печатает расплавленным пластиком. В дальнейшем он застывает под воздействием ультрафиолетового луча или просто при остывании.

Такие устройства используются для создания фигурок, шестеренок и других комплектующих для механизмов. Фотополимерный принтер печатает очень медленно. Продолжительность распечатки даже простеньких моделей может занимать десятки часов. Распространенной проблемой при использовании подобных устройств является смещение заготовки при печати, что случается в результате ее плохого приклеивания к основанию. Как следствие полученные изделия отправляются в брак. Такая проблема решается путем нанесения специальных клеев на подставку, на которой осуществляется печать. В этом случае адгезия между первым слоем модели и основанием увеличивается.

Восковые устройства

3D принтеры на таком материале применяются сравнительно редко, в связи с недостаточной прочностью воска и низкой температурой его плавления. Однако столь легкие для разрушения модели являются отличным решением при создании предметов из бронзы путем литья. Восковые изделия помещаются в слой песка таким образом, чтобы осталось только отверстие для заливки. В него заливается расплавленный металл. Он сжигает воск и занимает его место. После застывания получается такая же модель, но уже из бронзы, латуни, золота или алюминия. Именно таким оборудованием пользуются современные литейные мастерские, что многократно повышает производительность труда в сравнении с ручной лепкой.

Популярные технологии 3D печати

Существует около десятка технологий, по которым могут работать 3D принтеры. Далеко не все из них отвечают требованиям дешевизны и скорости печати, поэтому самыми популярными считаются всего 4 типа:

  1. FDM.
  2. SLA.
  3. SLS.
  4. 3DP.

FDM – это самая популярная технология. Это обусловлено невысокой стоимостью оборудования и сравнительно неплохим качеством печати. Такие устройства печатают пластиковой нитью. Принтер ее расплавляет, после чего формирует каплями пасты слои модели.

SLA принтеры вторые по популярности, и уступают только по цене, в то время как качество их работы на порядок выше. Они позволяют печатать очень точно, поэтому применяются при изготовлении моделей для производства ювелирных изделий. Их лазерный луч просвечивает ванну с жидким полимером, заставляя его точечно застывать. После извлекается полностью готовая модель без пустот.

SLS принтеры намного дороже, чем предыдущие виды. Они используют для печати порошок, который запекается лазером. Благодаря этому детали приобретают высокую степень прочности, поэтому во время печати не могут разрушиться, что исключает производство брака, конечно если программное моделирование сделано без ошибок. В качестве самого порошка могут применяться различные материалы, такие как бронза, керамика, литейный воск, стекло и так далее.

3DP оборудование подразумевает изначальное нанесение клея, после чего насыпается слой порошка. Устройство распространяет материал слоями. Полученные изделия внешне напоминают гипс. Для создания заготовок разных цветов колер добавляется в клей, а не в порошковые материалы. Такими устройствами можно печатать даже съедобные вещи. В этом случае в качестве порошка используется шоколадная крошка или сахар, а также специальный пищевой клей.

Сфера использования 3D принтеров

Подавляющее большинство печатного оборудования позволяющего создавать трехмерные модели применяется в качестве развлекательного устройства, с помощью которого изготовляют фигурки и различные предметы интерьера. 3D принтеры доступного ассортимента на большее и неспособны.

Существуют более совершенные устройства, которые применяют профессионально в различных сферах:
  • Архитектуре.
  • Дизайне.
  • Ювелирном деле.
  • Автомобильной промышленности.
  • Стоматологии.
  • Аэрокосмической промышленности и т.д.

С помощью 3D принтера осуществляется изготовление стоматологических имплантов, сложных деталей для автомобилей и даже целых домов. В мире существует несколько крупных печатных установок, которые печатают стены домов. Это большие принтеры, собираемые на строительной площадке. Их печатная головка двигается по периметру ранее созданного фундамента и тонкими слоями укладывает раствор. Благодаря наличию в составе полимерных добавок он сравнительно быстро застывает. Такая технология позволяет ускорить процесс и снизить затраты на одноэтажное строительство. Все же подобное оборудование не идеально, поскольку требует ручного изготовления фундамента, а также крыши. Получаемые стены имеют гребенчатую поверхность, на которой просматриваются все слои. Это решается использованием штукатурки или листовых отделочных материалов.

Критерии выбора 3D принтера

Подбирая устройство для объемной печати можно увидеть, что технические параметры принтеров существенно отличаются даже среди оборудования действующего по одной технологии.

Чтобы не прогадать, нужно обращать внимание в первую очередь на такие параметры:
  • Цена материала печати.
  • Скорость печати.
  • Область печати.
  • Точность.

Если принтер будет использоваться постоянно, то есть смысл выбрать более дорогое устройство, которое будет работать на дешевых расходниках, чем покупать недорогой принтер и много платить за материал. Это особенно важно, если получаемые модели будут продаваться в качестве сувениров. Выгоднее делать много изделий и реализовывать их дешево. Преследуя такую цель лучше остановиться на 3D принтерах, применяющих ABS и PLA пластики.

Очень важным параметром является скорость печати. Даже самые дорогие приборы делают это долго, но дешевые могут строить модели сутками. Если принтер будет применяться для серийного производства, то получить выгоду изготавливая одну фигурку или деталь раз в несколько дней невозможно. При выборе нужно ориентироваться не только по скорости заявленной производителем, но и смотреть на жесткость корпуса устройства. Если он сделан из металла, то действительно будет печатать быстрее и качественнее, но вот приборы с пластиковыми стойками во время работы на высокой скорости расшатываются, поэтому нарушается требуемая геометрия заготовок и приходится в настройках ставить низкую скорость.

Очень важным параметром является область печати. Именно по ней можно определить насколько крупные модели удастся распечатать. Чем выше область, тем лучше, но естественно крупное оборудование стоит дороже. Однако в определенных случаях можно распечатывать модели частями, а после их склеивать

Точность печати не менее важна, чем все предыдущие параметры. Отдельные 3D принтеры создают грубые модели, которые невозможно применить практически нигде. Если же хочется делать сложные сувениры, то лучше выбрать SLA устройства.

Следует учитывать, что более дешевые принтеры подразумевают только печать одним цветом. Загрузив изначально определенный материал сделать переключение на другой не удастся. Самые совершенные устройства подразумевают заправку материалами разных цветов, после чего они комбинируются автоматически, благодаря чему получается требуемая модель.

Средние по цене устройства работают аналогично дешевым. У них загружается рабочий материал одного цвета, но во время работы если требуется использовать другой оттенок, то принтер останавливается и сообщает об этом. Нужно убрать установленные расходники и поставить новые, после чего нажать кнопку продолжить. Принтер возобновит печатать уже новым цветом. Таким образом, поставить принтер и уйти не получится. Если на момент необходимости смены материала человека не будет рядом, то принтер так и будет оставаться в режиме ожидания для замены цвета, вне зависимости от того потребуется на это несколько минут или дней.

Похожие темы:

Как применить 3D-принтер в быту — эксперименты с Inno3D Printer D1 – Blog Imena.UA

3D-принтеры продолжительное время могли себе позволить только специализированные компании, которые испытывали необходимость в быстром создании прототипов готовых изделий, либо выпуске малых партий продукции. Создание изделия в единичных экземплярах с помощью трёхмерной печати, несмотря на высокую стоимость 3D-принтеров, во многих случаях гораздо дешевле, чем использование дорогих форм для литья или пресс-форм, либо применение инструментальных станков.

В последние годы стоимость 3D-принтеров значительно снизилась, что привлекло к ним внимание обычных потребителей. Производители усердно стимулируют этот спрос, показывая свои устройства на различных выставках и конференциях. Правда, демонстрация возможностей трёхмерной печати при этом сводится к созданию различных вычурных безделушек. Но можно ли сделать 3D-принтер полезным в быту и что для этого нужно? Редакция Блога Imena.ua провела собственный эксперимент, используя бюджетный аппарат Inno3D Printer D1 и высокочественные расходные материалы Verbatim PLA Filament.

Немного о технологиях

Прежде чем переходить к практике использования 3D-принтеров в быту, перечислим наиболее распространённые сегодня технологии. Для трёхмерной печати (второе название — «быстрое прототипирование») применяются различные способы и материалы, но в основе любого из них лежит принцип послойного наращивания твердотельной модели.

Разработки в области быстрого прототипирования велись ещё в 1980-х. Однако широкое коммерческое распространение 3D-принтеры получили лишь в начале 2010-х. Это было связано с окончанием срока действия ряда патентов, связанным с этим резким снижением стоимости устройств, популяризацией технологии среди широких масс и появлением относительно доступных и качественных расходных материалов.

Сегодня массово используется сразу несколько технологий для создания 3D-моделей:

  • Стереолитография (SLA). Исходный продукт — жидкий фотополимер, в который добавлен специальный реагент-отвердитель. В обычном состоянии материал остаётся жидким, но под воздействием ультрафиолетового света полимеризуется и становится твёрдым.
  • Селективное лазерное спекание. Технология аналогична SLA, но вместо жидкости используется порошок с размером частиц 50–100 мкм. Лазерный луч спекает очередной слой, в результате чего он затвердевает. Достоинство этого метода — различные исходные материалы, например, металл, пластик, керамика, стекло, специальный воск.
  • Метод многоструйного моделирования (Multi Jet Modeling, MJM). Здесь по аналогии с обычной струйной печатью материал подаётся через небольшие сопла, расположенные на печатающей головке. В качестве материала для MJM-принтеров могут использоваться пластики, фотополимеры, специальный воск, а также материалы для медицинских имплантов. Применение фотополимера требует засветки напечатанного слоя УФ-лампой с целью его отвердения.
  • Послойное склеивание пленок (Laminated Object Manufacturing, LOM). Тонкие листы материала режутся лазерным лучом или специальным лезвием по выкройке, соответствующей данному слою, а потом склеиваются между собой. Для создания 3D-моделей может использоваться не только пластик, но даже бумага, керамика или металл.

Однако основной причиной значительного удешевления 3D-принтеров стало изобретение технологии послойного наплавления — Fused Deposition Modeling (FDM). Также она известна как производство методом наплавления нитей — Fused Filament Fabrication. Именно этот метод сегодня наиболее распространён и доступен для конечных потребителей, не в последнюю очередь благодаря появлению наборов «сделай сам», позволяющих самостоятельно и достаточно дёшево собрать 3D-принтер.

Образец 3D-принтера из набора «сделай сам». Кстати, катушка для пластиковой нити распечатана на другом 3D-принтере

Суть метода FDM состоит в расплавлении нити из пластика в специальной печатающей головке — экструдере — который выдавливает жидкий материал через сопло и наносит его послойно на нужные участки изделия. Чем меньше диаметр сопла, тем тоньше будут напечатанные слои, и тем точнее форма готового объекта будет соответствовать цифровой модели.

В качестве расходного материала применяется пластик ABS и PLA. Первый производится из нефти, является непрозрачным, легко окрашивается в разные цвета. Среди его достоинств — невысокая стоимость и жёсткость (более высокая, чем PLA), потому изделие сохраняет форму при больших нагрузках. Для ABS необходим надёжный прогрев платформы 3D-принтера, температурный режим экструдера – 210-270°. Основной недостаток ABS – чувствительность к воздействию ультрафиолетовых лучей и атмосферных осадков.

В свою очередь, PLA — это экологически чистый полилактид (PLA), который также используется для производства одноразовой посуды и медицинских изделий. PLA производят из кукурузы и сахарного тростника. Этот материал легко разлагается в открытой среде и безопасен для человека, поэтому более популярен. Кроме того, в процессе работы принтер не производит неприятного запаха «паленой пластмассы». Есть недостаток: изделия из PLA со временем разрушаются, их среднее время жизни составляет около 3-4 лет при окружающей температуре около 25° С.

PLA пластик — это экологически чистый полилактид (PLA) производят из кукурузы и сахарного тростника. Этот материал легко разлагается в открытой среде и безопасен для человека

Среди недостатков FDM-технологии: невысокая скорость печати (впрочем, это общий недостаток для всех устройств 3D-печати) и относительно большая толщина слоя — около 0,1 мм, что приводит к заметной шершавости/слоистости поверхности изделия.

Кроме того, иногда возникают сложности с фиксацией модели на рабочем столе, ведь первый слой, который служит как бы фундаментом для всех остальных, должен надёжно «приклеиться» к поверхности платформы. Чтобы решить эту проблему, производители наносят на рабочий стол специальное покрытие, а также снабжают его системой подогрева. Тем не менее, иногда модель всё-таки отрывается от стола в процессе печати, что приводит к непоправимому браку.

Расходные материалы

Ситуация на рынке расходных материалов для трёхмерной печати напоминает рынок обычных принтеров: есть «оригинальные расходники» от именитых производителей и есть более дешёвая «совместимая» продукция от noname-вендоров.

3D-принтеры потребляют пластиковую нить двух стандартных диаметров: 1,75 и 3 мм. Нужный диаметр определяется спецификацией принтера, причём значительные отклонения от стандартного диаметра могут привести к сложностям в работе принтера. Пластик поставляется в катушках и продаётся на вес. PLA гигроскопичен и при хранении требует соблюдения режима влажности, иначе может начаться расслоение материала, что приведёт к дефектам при изготовлении модели.

Для каждого типа материала должна быть известна рабочая температура, до которой должен нагреваться материал в печатающей головке. Эти величины не обязательно будут одинаковы для всех «расходников», сделанных из одного и того же материала. В идеале, оптимальные температуры вендор должен указать на этикетке катушки или в инструкции по применению. Если таких данных нет, их приходится подбирать экспериментально.

Оптимальная рабочая температура пластика Verbatim указана на этикетке

Verbatim — один из наиболее известных производителей, предлагающий высококачественный пластик из полимолочной кислоты. По заявлению вендора, нить обладает низкой возгораемостью. Кроме того, важное преимущество в том, что не требуется подогреваемая платформа для печати. Оптимальная рабочая температура указана на этикетке — от 200 до 220 °С.

Verbatim предлагает PLA-нить различной расцветки

PLA-нить поставляется намотанной на катушку и запакованной в коробку, в которую вложен специальный материал для поглощения влаги. Измерение диаметра нити в нескольких образцах пластика подтвердило заявленные 1,75 мм с погрешностью в несколько сотых. Стабильность размера диаметра обеспечивает максимально однородную волокнистую структуру для получения оптимального качества. Тест на изгиб рукой также показал хорошие результаты: пластик не ломался.

Полупрозрачная PLA-нить позволяет печатать изделия, напоминающие по внешнему виду стекло

Inno3D Printer D1  — доступный 3D-принтер

Для эксперимента мы выбрали устройство Inno3D Printer D1 – один из самых доступных принтеров для трёхмерной печати. Аппарат работает по технологии послойного наплавления, его стоимость составляет чуть выше 1 тыс евро.

Внешне Inno3D Printer D1 напоминает устройства, которые энтузиасты собирают вручную. Защитного кожуха здесь нет, принтер имеет открытую конструкцию. Нижняя часть аппарата представляет собой короб из листовой жести, в которой размещён сенсорный экран управления, разъём miniUSB, слот для карт SD и сервопривод для перемещения рабочего стола по оси Y. Экструдер перемещается по осям X и Z благодаря двум вертикальным направляющим и соединяющих их горизонтальной направляющей. Катушка с пластиковой нитью крепится сбоку на трёх роликах.

Принтер Inno3D Printer D1 отличается открытой конструкцией (вид сверху). Слева расположена катушка с PLA-нитью, которая по рукаву подаётся на экструдер (справа)

Для фиксации модели на рабочем столе на его поверхность наклеивается специальная бумага, именно на неё ложится первый слой. Следует отметить, что эту бумагу можно использовать многократно, пока она не начнёт топорщиться или протираться.

Inno3D Printer D1 позволяет печатать несколько несвязанных между собой объектов

Отсутствие общего защитного кожуха, очевидно, негативно влияет на работоспособность устройства. Дело в том, что 3D-принтер — это достаточно прецизионный механизм, который должен обеспечить перемещение экструдера с шагом примерно 0,1 мм по любой из осей. Поскольку все трубки-направляющие покрыты машинным маслом, и при этом никак не защищены от внешнего воздействия, со временем на них может скапливаться пыль, грязь, абразив. Чтобы не случилось заклинивания, направляющие элементы придётся время от времени чистить и смазывать. А ещё лучше сделать самодельный защитный кожух.

3D-печать — это длительный процесс. Печать полого цилиндра высотой 30 мм занимает около часа

Принтер позволяет печатать с компьютера через miniUSB-порт, либо с карты памяти SD. В первом случае процесс проходит автономно от ПК, во-втором — компьютер должен работать всё то время, пока идёт печать. Перед работой необходимо провести процедуру автотестирования и автокалибровки, что может занять порядка 15-20 минут. Эти процедуры запускаются с помощью команд на сенсорном экране.

Для подготовки файла формата STL к печати используется специальное программное приложение inno3D printer D1, которое поставляется в комплекте с принтером. С его помощью можно изменить размер и расположение модели, его ориентацию на рабочем столе. Кстати, принтер позволяет печатать одновременно несколько отдельных фигур, однако необходимо их расположить на достаточном расстоянии друг от друга на рабочем столе. Кроме того, необходимо выполнить процедуру Build, которая осуществляет финишную подготовку к печати, отдельно для каждой фигуры.

Приложение inno3D printer D1 показывает примерное время, которое потребуется для печати модели. Как показало тестирование, обычно оценочное время существенно завышено, особенно если процесс только стартовал. Но чем ближе к финишу — тем точнее приложение показывает время, которое необходимо для завершения печати.

Приложение inno3D printer D1 показывает примерное время, которое потребуется для печати модели

Кнопка Print приложения запускает процесс печати, с помощью этой же кнопки при необходимости его можно приостановить. Очень важно с запасом загрузить в катушку расходные материалы для печати. Если их не хватит, то процесс печати модели прервётся, так как догрузить «расходники» прямо во время процесса и допечатать затем начатую фигуру не получится. Стоит отметить, что принтер не может определить, что закончились расходные материалы, или случилась другая проблема, из-за которой пластиковая нить больше не поступает. То есть, устройство продолжает «имитировать» процесс печати, хотя из сопла экструдера больше не выходит расплавленный пластик.

inno3D printer D1 не может определить, что закончились расходные материал и пластиковая нить больше не поступает

В настройках можно выбрать печать слоями от 0,12 мм до 0,3 мм. Логично предположить, что слой 0,3 мм позволит напечатать модель намного быстрее, тем более, что не всегда требуется прецизионная печать слоем в 0,12 мм. Но проблема в том, что при выборе слоя 0,3 мм нити не склеиваются между собой. То есть, для получения прочной трёхмерной модели у пользователя остаётся только один вариант — 0,12 мм.

Вообще, процесс 3D-печати — достаточно длительный, например, печать тонкостенного цилиндра высотой 30 мм занимает около часа. Более крупные модели могут печататься целый день. Расход пластиковой нити составляет около 10 см за 3 минуты.

«Барахолка» готовых 3D-моделей. ПО для создания собственных продуктов

Для получения виртуальной трёхмерной модели есть три пути. Первый и самый доступный — скачать уже готовую модель с одного из специализированных интернет-порталов, которая очевидно будет лишь красивой безделицей, но в некоторых случаях, не исключено, может как-то пригодиться в хозяйстве. Например, на сайте 3Dtoday.ru после регистрации можно скачать множество уже готовых моделей как платно, так и бесплатно.

Второй способ — создать цифровую модель с помощью 3Dсканирования уже готового изделия. Такой подход очень эффективен, но в связи с дороговизной трёхмерных сканеров доступен пока лишь профессиональным конструкторам.

Если же необходимо распечатать изделие под собственные требования, для решения практических задач вам потребуется ПО для создания 3D-моделей. Среди наиболее простых в освоении и в то же время обладающих неплохой функциональностью можно порекомендовать Autodesk 123D и Tinkercad, это САПР-системы  в браузере от вендора Autodesk, которые не требуют установки на жесткий диск. Среди альтернатив — 3DTIN, также редактор в браузере, функциональность которого похожа на Tinkercad, и Google SketchUp, достаточно простая система для начинающих осваивать 3D-графику от интернет-гиганта.

Если же возможностей бесплатных систем не хватает, отметим, что профессиональные конструкторы для создания моделей используют Autodesk Inventor, Autodesk 3D max, Solidworks, CATIA

Tinkercad — бесплатный и простой в освоении редактор в браузере для создания 3D-моделей

При выборе ПО необходимо удостовериться, что приложение способно сохранять файл в формате STL (все вышеописанные приложения поддерживают STL). Именно этот формат используется для хранения трёхмерных моделей объектов. По своей сути STL представляет собой список треугольных граней, которые описывают поверхность модели, и их нормалей.

3D-печать для бытовых нужд. Собственный опыт

В процессе тестирования мы поставили две вполне бытовые задачи. Во-первых, распечатать две втулки для крепления мебельных принадлежностей; во-вторых, распечатать специальную крепёжную муфту для блендера Braun взамен поломанной. В первом случае решение задачи было продиктовано тем, что для крепления требовались уникальные втулки, аналоги которых вряд ли можно было найти в магазинах. Во-втором случае нами руководило обычное желание сэкономить. Замена пластиковой муфты для блендера в сервисном центре стоила порядка 450 грн, притом что совершенно новый блендер стоил около 850 грн. По расчётам, 3D-печать такой муфты обошлась бы на порядок дешевле.

Для создания виртуальных моделей был выбран популярный редактор в браузере Tinkercad. При первом запуске необходимо пройти регистрацию, после чего в вашей учётной записи автоматически будут сохраняться все созданные модели. Программа бесплатна, легка в освоении и вполне подходит для создания простых конструкций.

Одно из важных преимуществ создания конструкций с использованием 3D-принтера —  так называемое «право на ошибку». То есть, если вы создали трёхмерную модель, распечатали её и она не подошла — ничего страшного, всегда можно изменить параметры виртуальной конструкции и распечатать заново. Конечно, будет потрачено время и расходные материалы, тем не менее, несколько попыток наверняка позволят добиться нужного результата.

Одна из пластиковых втулок, созданных за несколько минут в Tinkercad и распечатанных на 3D-принтере

Кстати, печать с помощью расходных материалов Verbatim при толщине слоя 0,12 мм показала отличные результаты — слои легли ровно, соединение между ними было очень прочное. По сути, распечатанная на 3D-принтере модель представляет собой некое подобие «слоёного пирога», и если сварка слоёв произошла недостаточно хорошо, то модель будет отличаться низкой прочностью. Однако в нашем тесте пластиковое изделие толщиной от 5 мм оказалось настолько прочным, что его было сложно поломать без использования каких-либо инструментов. Вместе с тем, пластиковый лист толщиной 1-1,5 мм получался весьма гибким, совершенно не жёстким. Добавим, что печать производилась при температуре 220°С.

На печать этой необычной вазы потребовалось около 8 часов. Бесплатная цифровая модель была загружена с одного из интернет-сайтов, посвященных технологии 3D. Вершина недопечатана — закончилась PLA-нить

Кстати, при наличии определённого опыта в конструировании можно создать и распечатать, например, крышку для смартфона, однако она будет чуть толще фабричной, поскольку при стандартной толщине PLA-пластик обеспечивает недостаточную прочность.

Правила конструирования 3D-моделей

При разработке собственных трёхмерных моделей следует придерживаться следующих правил.

Минимум нависающих элементов. 3D-принтер с лёгкостью справляется с печатью вертикальных элементов, однако для каждого нависающего элемента необходима поддерживающая конструкция. Предположим, вы печатаете миниатюрную модель дома с двухскатной крышей. С печатью фундамента и стен проблем не будет, а вот для воссоздания крыши понадобится спроектировать поддержку. После окончания процесса печати поддержка удаляется острым ножом. Без поддержки допускается печать стенок, которые имеют угол наклона не более 70°.

Плоское основание. Чтобы получить качественный результат, печатаемая модель должна надёжно держаться на столе принтера. Если она отклеится (а такое случается), то вы гарантированно получите на выходе брак.

Ограничение по габаритам. Любой принтер имеет ограничения по максимально допустимым размерам печатаемой модели. В случае, если нужно напечатать изделие, которое больше этих габаритов, его необходимо в САПР-системе разделить на части, чтобы напечатать их по отдельности. Впоследствии эти части можно склеить воедино. Для этого рекомендуется сразу предусмотреть в конструкции соединение типа «гребенка», «шип» или «ласточкин хвост».

Резюме. Будущее 3D-принтеров

Ещё около двух лет назад главный футуролог Cisco Дэйв Эванс предсказал, что с помощью 3D-принтеров можно будет распечатать любую продукцию, даже еду и одежду. Кроме того, уже появились биопринтеры, которые выполняют печать 3D-структуры органов для пересадки стволовыми клетками. Дальнейшее деление, рост и модификация клеток обеспечивает окончательное формирование объекта. Кстати, ещё в 2012 году один из учёных, работавших над созданием данной технологии, распечатал почку. Более того, уже отработана технология распечатки велосипедов, турбовинтовых двигателей и т. д. В прошлом году с помощью специального сверхкрупного 3D-принтера удалось напечатать двухэтажный дом всего за 3 часа. Уже ведутся разработки по возведению многоэтажных зданий.

Согласно прогнозам, к 2020 году стоимость устройств снизится настолько, что их сможет себе позволить любая семья (правда, речь идёт об американской семье). И 3D-принтер станет таким же неотъемлемым аксессуаром дома, как СВЧ-печь или стиральная машина.

Зубные протезы, созданные с помощью технологии трёхмерной печати

А каковы реалии сегодняшнего дня? Применение 3D-принтеров в быту пока не очень оправдано. Да, при наличии конструкторских навыков можно создать виртуальной трёхмерную модель в одном из САПР-редакторов и затем распечатать её в реальности. Преимущества такого подхода в том, что можно создать уникальное изделие под собственные нужды в единственном экземпляре. Недостаток в том, что PLA-пластик не всегда обеспечивает требуемую прочность. Кроме того, при интенсивном использовании на открытом воздухе PLA-пластик через пару лет начинает разлагаться. Что ж, посмотрим, насколько это соответствует действительности. Но скорее всего, через несколько лет уже появятся новые технологии 3D-печати, которые ещё более приблизят к нам будущее, прогнозируемое в этой области футурологами.

Технические характеристики Inno3D Printer D1

  • Технология печати: Моделирование методом наплавления (FDM/FFF)
  • Количество печатающих головок: 1
  • Диаметр сопла: 0.4 мм
  • Область построения: 140 x 140 x 150 мм
  • Толщина слоя: 0.13 – 0.3 мм
  • Дисплей: Сенсорный ЖК дисплей
  • Материал для печати: PLA-пластик
  • Диаметр нити: 1.75 мм
  • Интерфейсы: USB, Слот для SD-карт
  • Формат файлов: STL
  • Габариты принтера: 39 x 36 x 54 см
  • Вес: 10 кг

Виды и применение смол для 3D-принтеров

3D-печать смолой развивалась так же, как 3D-печать FDM, пока она не стала доступной для всех типов пользователей. Это новое движение за счет использования 3D-принтеров на основе смол привело к разработке широкого диапазона смол, с очень разными свойствами и сферами применения.

В этой статье мы попытаемся объяснить и уточнить типы и области применения существующих смол для 3D-принтеров (SLA, DLP, LED / LCD, LFS и т. Д.).

Виды смол

Большинство пользователей знакомы с типами материалов, используемых в технологии FDM, но когда они начинают 3D-печать смол, они обычно сталкиваются с проблемой отсутствия знаний о типах смол. Так же, как и в технологии FDM, существует двух больших групп материалов для полимерных 3D-принтеров: стандартных и расширенных.

Стандартные смолы

Обычно это называется «Стандартная смола» — смола , которая используется для изготовления деталей общего назначения в любом 3D-принтере на основе смолы. Смолы, относящиеся к этой категории, имеют хорошую поверхность и умеренные механические свойства, , такие как смолы со свойствами, аналогичными ABS (zABS), смолы для очень быстрой печати (zUDP) или даже смолы, которые позволяют создавать цвет, который желаемого пользователя (Color Base Kit).

Изображение 1: Кусок отпечатан с использованием набора Color Base Kit. Источник: Formlabs

Смолы улучшенные

Все смолы с идеальными механическими свойствами для функциональных применений или смолы с особым качеством, необходимым для определенных технических применений , относятся к этой категории.В этой категории есть три отдельные группы: инженерные, стоматологические и литые .

Технические смолы — это материалы, разработанные для решения самых сложных инженерных задач благодаря специализации материала для очень специфического применения. Вы можете найти такие материалы, как смола Gray Pro Resin, которая сочетает в себе очень хорошие механические свойства, высокую геометрическую точность и хорошее качество поверхности . Существуют также гибкие смолы (Elastic Resin и Flexible Resin), которые демонстрируют низкий модуль упругости и высокое удлинение, подходящие свойства для печати демпфирующих элементов , упаковки, гибких или эргономичных деталей .Существуют высокотемпературные смолы (High Temp Resin), которые благодаря низкому тепловому расширению и высокому модулю упругости могут использоваться для печати моделей для экологических испытаний, форм и шаблонов для литейного производства и операций термоформования, что намного быстрее, экономичнее и даже более точный, чем при использовании традиционных методов. Другими материалами, представляющими большой интерес для этого сектора, являются смолы, армированные стекловолокном, с стойкостью к сильным ударам (жесткая смола) или низким трением и с высоким удлинением (прочная смола).

Изображение 2: Дрон, изготовленный из Tough Resin. Источник: Formlabs

Как уже упоминалось, передовые группы смол — это специализированные материалы, наиболее ярким примером которых является стоматологическая смола . Все эти материалы имеют сертификат биосовместимости для обеспечения работоспособности предметов, предназначенных для стоматологического использования. Специалисты в этой области изготавливают коронок и мостовидных протезов моделей (Dental Sand A1-A2 Resin), хирургических шаблонов (Dental SG Resin), шин и ретейнеров (Dental LT Clear Resin) с невероятной точностью и стоимостью материалов, намного уступающей вызванные традиционными методами.

Изображение 3: Хирургический шаблон. Источник: Formlabs

Завершают область передовых смол литьевые смолы . Эти смолы используются для изготовления металлических деталей по выплавляемым моделям , , особенно в области ювелирных изделий . Литые смолы в сочетании с 3D-принтерами на основе смолы — это идеальный набор для удовлетворения потребности в производстве небольших металлических деталей с высокой детализацией, которые нужны каждому ювелиру, быстрее, проще и прибыльнее, чем при использовании традиционных производственных процессов.

Изображение 4: Модель для воска по выплавляемым моделям и металлический наконечник. Источник: Formlabs

Приложения

Помимо однозначного использования каждого типа смолы (стоматологической, литьевой, гибкой, термостойкой и т. Д.), определенная смола для одного применения также действительна для других областей применения . В этом случае есть стоматологические смолы (Dental Model Formlabs, zDental Model Sand, Dental Resin HARZ Labs), которые демонстрируют высокие механические свойства и высококачественную отделку поверхности , идеально подходящую для печати готовых функциональных деталей.

Изображение 5: Функциональная эластичная подошва обуви. Источник: Formlabs

Перед приобретением смолы

При приобретении смолы необходимо учитывать тип 3D-принтера , доступный пользователю ( SLA, DLP, LED / LCD, LFS и т. Д.) И длину волны генерируемого им УФ-луча. . Наиболее распространенная длина волны — 405 нм , но на рынке можно найти 3D-принтеры, использующие от 350 до 410 нм. Как только эти две характеристики известны, пользователь уже может искать смолу , которая соответствует его потребностям , не забывая, что ему нужен отверждающий центр , который использует ту же длину волны , что и 3D-принтер , чтобы получить максимум механические свойства предлагает каждый материал

Заключение

3D-печать смолой уже достаточно развита, чтобы покрыть все потребности любого пользователя, как для печати декоративных элементов, так и для прочных деталей или специализированных продуктов для некоторых областей промышленности.

Вы хотите получать подобные статьи на свою электронную почту?

Подпишитесь на нашу ежемесячную новостную рассылку, и каждый месяц вы будете получать по электронной почте последние новости и советы по 3D-печати.

* Регистрируясь, вы принимаете нашу политику конфиденциальности.

Чемодан для 3D-принтера

Каковы преимущества технологии 3D-печати SLA?

Автор: Kings 3D Gary Wu

Стереолитография (SLA) — это процесс аддитивного производства, который относится к семейству фотополимеризации в ванне.В SLA объект создается путем выборочного отверждения полимерной смолы слой за слоем с использованием ультрафиолетового (УФ) лазерного луча. Материалы, используемые в SLA, представляют собой светочувствительные полимеры в жидкой форме.

SLA известна тем, что является первой технологией 3D-печати: ее изобретатель запатентовал эту технологию еще в 1986 году. Если требуются детали очень высокой точности или гладкой поверхности, SLA является наиболее рентабельной технологией 3D-печати. Наилучшие результаты достигаются, когда проектировщик использует преимущества и ограничения производственного процесса.

Технология SLA чрезвычайно универсальна, и ее можно использовать, когда точность является общим приоритетом, а форма, подгонка и сборка имеют решающее значение. Допуски на детали SLA обычно составляют менее 0,05 мм, и эта технология обеспечивает самую гладкую поверхность из всех процессов аддитивного производства. Учитывая уровень качества, которого может достичь SLA, он особенно полезен для создания высокоточных 3D-печатных моделей отливок от малых до очень больших, быстро и недорого.

3D-принтеры KINGS SLA (размеры печати от 300 * 300 * 350 мм до 1700 * 800 * 600 мм) обеспечивают высокую производительность, непревзойденное разрешение и точность деталей, а также широкий спектр материалов для печати. Ни один другой процесс аддитивного производства не предназначен для более широкого круга приложений, включая наиболее требовательные приложения для быстрого производства высокоточных и долговечных прототипов любой формы. Когда деталь, напечатанная SLA, готова, она очищается в растворе растворителя для удаления влажной смолы, оставшейся на поверхности детали.Затем деталь помещается в УФ-печь для отверждения, завершая процесс печати смолой.

В системах SLA большинство параметров печати фиксируются производителем и не могут быть изменены. Единственными входными данными являются высота слоя и ориентация детали (последняя определяет расположение опоры). Типичная высота слоя в SLA составляет от 25 до 250 микрон. Более низкие значения высоты слоя позволяют более точно отображать изогнутую геометрию, но увеличивают время (и стоимость) сборки и вероятность неудачной печати.Высота слоя 100 микрон подходит для большинства обычных применений.

Вкратце, вот преимущества стереолитографии (SLA):

Высокая точность, мелкие детали: благодаря большой толщине каждого слоя, наносимого в стереолитографии (0,05–0,25 мм), и тонкому лазерному лучу, возможно получение прототипов с очень реалистичной отделкой и сложными геометрическими формами.

Качество детали: несмотря на использование материалов-заменителей (смолу), детали, изготовленные с помощью стереолитографии, имеют хорошее функциональное качество поверхности.SLA позволяет производителям экономить время на высокоточных деталях, особенно когда вам требуется несколько функциональных прототипов или быстрый одиночный образец литья

Гладкая отделка: в стереолитографии получаемые детали имеют гладкую отделку с возможностью выбора между ряд смол для различных визуализаций, что упрощает их полировку, окраску и отделку, если это необходимо, и идеально подходит для испытаний в аэродинамической трубе и аналогичных приложений.

От самых маленьких до самых больших: с помощью стереолитографии можно создавать небольшие детали с высоким разрешением, а также большие детали размером до двух метров, сохраняя при этом высокую точность.На крупноразмерном 3D-принтере KINGS вы можете даже напечатать автомобильные бамперы, решетки, приборные панели и другие детали в соотношении 1: 1. Это эффективно снижает количество ошибок и непроизводительных затрат труда, вызванных сваркой, а также повышает эффективность разработки автомобильной продукции более чем в 5 раз.

Цена и время выполнения: Выбрав метод стереолитографии, вы можете получить деталь примерно за два дня, потому что 3D-файлов достаточно для запуска печати. С другой стороны, стоимость разумная, потому что нет необходимости создавать форму, поскольку стереолитография работает путем добавления материала.

Для получения дополнительной информации щелкните: www.kings3dprinter.com

3D-принтер

Дези gned за Прототип pe Ve рифичный действие
± 0,05 м м (М одель Siz e Toler род)

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Кристаллический источник света № 3 поколения

Сравните с кристаллическим источником света поколения №2, B4 был оснащен источником света поколения №3, однородность света которого увеличилась на 10%.Допуск на размер вашей модели для печати составляет ± 0,05 мм, это означает, что вы можете получить чрезвычайно точную модель для завершения работы по созданию прототипа.

Подробнее

的 浏览 器 不 支持 Video 标签。 请 使用 Firefox 、 Chrome 进行 浏览

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Невероятное качество деталей

Применяя Bene4 в вашем проекте, вы получаете полезную модель для проверки всего.Сравните внешний вид, размер и даже проверьте, подходит ли каждая пряжка.

  • 45 мкм

    Разрешение XY
  • Время печати

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Прототипирование телефона

После завершения дизайна корпуса мобильного телефона дизайнеру потребовалось всего 2 часа, чтобы получить образцы и получить одобрение клиента.

  • 45 мкм

    Разрешение XY
  • Время печати

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Air Pods Улучшение дизайна

Улучшите конструкцию, чтобы зарядная коробка Airpods получила большую емкость аккумулятора.Каждый из компонентов внутри зарядного устройства должен быть предельно точным, иначе работы по сборке не будут завершены.

  • 45 мкм

    Разрешение XY
  • Время печати

Бесплатный дизайн уровней

По сравнению со стальным шариком, конструкция платформы, запатентованная NOVA3D, проще в использовании.Платформа сохранит состояние выравнивания даже при интенсивной эксплуатации. Это означает, что вы можете забыть о работах по выравниванию, пока регулировочные винты не ослабнут.

Подробнее

的 浏览 器 不 支持 Video 标签。 请 使用 Firefox 、 Chrome 进行 浏览

  • Улучшенная система линейных направляющих

    • Предметы Bene4 Другой бренд
    • Направляющая 20мм 15мм
    • Блок слайдов Подшипник Пластик
    • Стоимость гида Liear 2.6 * другой бренд Дешево
  • Удобный дизайн емкости для смолы

    Вы можете взять емкость со смолой непосредственно за ручку, а затем поставить ее на стол, не беспокоясь о загрязнении пленки FEP. Все эти конструкции могут принести большое удобство пользователю во время использования.

  • 4.Экран 3 дюйма, легче управлять

    4.3-дюймовый экран, простой интерфейс, обеспечивает отличное управление.

Конструкция с быстрой заменой экрана
экономия времени на техническое обслуживание

Встроенная память 8 ГБ, более стабильная печать напрямую без U-диска.

Шум при печати составляет всего 0 децибел, как при тихом разговоре человека.

130 мм * 70 мм * 150 мм размер печати, объем печати больше, чем у обычного 5,5-дюймового 3D-принтера.

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Как выполнить печать с помощью Bene4?

С помощью Bene4 вы можете приступить к печати без каких-либо навыков печати.Вам не нужно делать работы по выравниванию или собирать что-либо, просто налейте смолу и начните работу.

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Выберите модель

Поместите файл STL в NOVA Maker, добавьте поддержку, нарежьте файл.

Ваш браузер не поддерживает теги видео.Пожалуйста, используйте Firefox и Chrome для просмотра

Передача файла для печати

Вы можете найти файл печати на принтере через U-образный диск или просто через WIFI.

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Обработка модели

После удаления всех опор очистите модель, потребовалось вторичное лечение.

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Гаражные комплекты

С Bene4 вы можете печатать мелкие детали гаражных комплектов. Наслаждайтесь счастливым временем.

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Ювелирные изделия

Воплотите свой ювелирный дизайн в жизнь, вы получите больше вдохновения.

Ваш браузер не поддерживает теги видео. Пожалуйста, используйте Firefox и Chrome для просмотра

Проверка конструкции

С Bene4 , Вы получите детали более высокой точности, ваша работа по проверке прототипа будет проще.

Вам могут понадобиться запчасти здесь

Купить сейчас

приложений для 3D-печати, включая прототипирование, тестирование и производство деталей

перейти к содержанию
  • Поддержка
  • Блог
  • Поиск
  • Карьера
  • Служба 3D-печати
  • Магазин
  • COVID-19
Facebook