Печатные платы: экскурсия на завод Технотех / Блог компании Madrobots / Хабр

экскурсия на завод Технотех / Блог компании Madrobots / Хабр
Сегодня мы выступим в немного непривычном для себя амплуа, будем рассказывать не о гаджетах, а о технологиях, которые стоят за ними. Месяц назад мы были в Казани, где познакомились с ребятами из Навигатор-кампуса. Заодно побывали на расположенном близко (ну, относительно близко) заводе по производству печатных плат — Технотех. Этот пост — попытка разобраться в том, как же все-таки производят те самые печатные платы.

Итак, как же все-таки делают печатные платы для наших любимых гаджетов?

На заводе умеют делать платы от начала и до конца — проектирование платы по вашему ТЗ, изготовление стеклотекстолита, производство односторонних и двухсторонних печатных плат, производство многослойных печатных плат, маркировка, проверка, ручная и автоматическая сборка и пайка плат.
Для начала, я покажу, как делают двухсторонние платы. Их техпроцесс ничем не отличается от производства односторонних печатных плат, кроме того, что при изготовлении ОПП не производят операции на второй стороне.

Содержание

О методах изготовления плат
Вообще, все методы изготовления печатных плат можно разделить на две большие категории: аддитивные(от латинского
additio
-прибавление) и субтрактивные (от латинского subtratio—отнимание). Примером субтрактивной технологии является всем известный ЛУТ(Лазерно-утюжная технология) и его вариации. В процессе создания печатной платы по этой технологии мы защищаем будущие дорожки на листе стеклотекстолита тонером от лазерного принтера, а затем стравливаем все ненужное в хлорном железе.
В аддитивных методах проводящие дорожки, наоборот, наносятся на поверхность диэлектрика тем или иным способом.
Полуаддитивные методы(иногда их еще называют комбинированными. ) — нечто среднее между классическими аддитивными и субтрактивными. В процессе производства ПП по этому методу часть проводящего покрытия может стравливаться(иногда почти сразу после нанесения), но как правило это происходит быстрее/проще/дешевле, чем в субтрактивных методах. В большинстве случаев, это следствие того, что большая часть толщины дорожек наращивается гальваникой или химическими методами, а слой, который подвергается травлению — тонкий, и служит лишь в качестве проводящего покрытия для гальванического осаждения.
Я покажу именно комбинированный метод.
Изготовление двухслойных печатных плат по комбинированному позитивному методу(полуаддитивный метод)
Изготовление стеклотекстолита
Процесс начинается с изготовления фольгированного стеклотекстолита. Стеклотекстолит — это материал, состоящий из тонких листов стекловолокна(они похожи на плотную блестящую ткань), пропитанных эпоксидной смолой и спрессованных стопкой в лист.
Сами полотна стекловолокна тоже не слишком просты — это плетеные(как обычная ткань в вашей рубашке) тонкие-тонкие нити обычного стекла. Они настолько тонкие, что могут легко гнуться в любых направлениях. Выглядит это примерно вот так:

Увидеть ориентацию волокон можно на многострадальной картинке из википедии:

В центре платы, светлые участки — это волокна идут перпендикулярно срезу, участки чуть темнее — параллельно.
Или например на микрофотографии tiberius, насколько я помню из этой статьи:

Итак, начнем.
Стекловолоконное полотно поступает на производство вот в таких бобинах:

Оно уже пропитано частично отвержденной эпоксидной смолой — такой материал называется препрегом, от английского pre-impregnated — предварительно пропитанный. Так как смола уже частично отверждена, она уже не такая липкая, как в жидком состоянии — листы можно брать руками, совсем не опасаясь испачкаться в смоле. Смола станет жидкой только при нагреве фольги, и то лишь на несколько минут, прежде чем застыть окончательно.

Нужное количество слоев вместе с медной фольгой собирается вот на этом аппарате:

А вот сам рулон фольги.

Далее полотно нарезается на части и поступает в пресс высотой в два человеческих роста:

На фото Владимир Потапенко, начальник производства.
Интересно реализована технология нагрева во время прессования: нагреваются не части пресса, а сама фольга. На обе стороны листа подается ток, который за счет сопротивления фольги нагревает лист будущего стеклотекстолита. Прессование происходит при сильно пониженном давлении, для исключения появления воздушных пузырей внутри текстолита

При прессовании, за счет нагрева и давления, смола размягчается, заполняет пустоты и после полимеризации получается единый лист.
Вот такой:

Он нарезается на заготовки для плат специальным станком:

Технотех использует два вида заготовок: 305х450 — маленькая групповая заготовка, 457х610 — большая заготовка
После этого к каждому комплекту заготовок распечатывается маршрутная карта, и путешествие начинается…

Маршрутная карта — это вот такая бумажка с перечнем операций, информацией о плате и штрих-кодом. Для контроля выполнения операций используется 1С 8, в которую внесена вся информация о заказах, о техпроцессе и так далее. После выполнения очередного этапа производства сканируется штрихкод на маршрутном листе и заносится в базу.

Сверловка заготовок
Первый этап производства однослойных и двухслойных печатных плат — сверление отверстий. С многослойными платами все сложнее, и я расскажу об этом позже. Заготовки с маршрутными листами поступают на участок сверловки:

Из заготовок собирается пакет для сверловки. Он состоит из подложки(материал типа фанеры), от одной до трех одинаковых заготовок печатных плат и алюминиевой фольги. Фольга нужна для определения касания сверла поверхности заготовки — так станок определяет поломку сверла. Еще при каждом захвате сверла он контролирует его длину и заточку лазером.

После сборки пакета он закладывается вот в этот станок:

Он такой длинный, что мне пришлось сшивать эту фотку из нескольких кадров. Это швейцарский станок фирмы Posalux, точной модели, к сожалению не знаю. По характеристикам он близок вот к этому. Он ест трехразовое трехфазное питание напряжением 400В, и потребляет при работе 20 КВт. Вес станка около 8 тонн. Он может одновременно обрабатывать четыре пакета по разным программам, что в сумме дает 12 плат за цикл(естественно, что все заготовки в одном пакете будут просверлены одинаково). Цикл сверления — от 5 минут до нескольких часов, в зависимости от сложности и количества отверстий. Среднее время — около 20 минут. Всего таких станков у технотеха три штуки.

Программа разрабатывается отдельно, и подгружается по сети. Все что надо сделать оператору — отсканировать штрихкод партии и заложить пакет из заготовок внутрь. Емкость инструментального магазина: 6000 сверл или фрез.

Рядом стоит большой шкаф со сверлами, но оператору нет необходимости контролировать заточку каждого сверла и менять его — станок все время знает степень износа сверл — записывает себе в память сколько отверстий было просверлено каждым сверлом. При исчерпании ресурса сам меняет сверло на новое, старые сверла останется выгрузить из контейнера и отправить на повторную заточку.

Вот так выглядят внутренности станка:

После сверловки в маршрутном листе и базе делается отметка, а плата отправляется по этапу на следующий этап.
Очистка, активация заготовок и химическое меднение.
Хоть станок и пользуется своими «пылесосом» во время и после сверловки, поверхность платы и отверстий все равно надо очистить от загрязнений и подготовить к следующей технологической операции. Для начала, плата просто очищается в моющем растворе механическими абразивами

Надписи, слева направо: «Камера зачистки щетками верх/низ», «Камера промывки», «Нейтральная зона».
Плата становится чистой и блестящей:

После этого в похожей установке проводится процесс активации поверхности. Для каждой поверхности вводится серийный номер Активация поверхности — это подготовка к осаждению меди на внутреннюю поверхность отверстий для создания переходных отверстий между слоями платы. Медь не может осесть на неподготовленную поверхность, поэтому плату обрабатывают специальными катализаторами на основе палладия. Палладий, в отличии от меди, легко осаждается на любую поверхность, и в дальнейшем служит центрами кристаллизации для меди. Установка активации:

После этого, последовательно проходя несколько ванн в еще одной похожей установке заготовка обзаводится тонким(меньше микрона) слоем меди в отверстиях.

Дальше этот слой гальваникой наращивается до 3-5 микрон — это улучшает стойкость слоя к окислению и повреждениям.

Нанесение и экспонирование фоторезиста, удаление незасвеченных участков.
Дальше плата отправляется в участок нанесения фоторезиста. Нас туда не пустили, потому что он закрыт, и вообще, там чистая комната, поэтому ограничимся фотографиями через стекло. Нечто подобное я видел в Half-Life(я про трубы, спускающиеся с потолка):

Собственно вот зеленая пленка на барабане — это и есть фоторезист.

Далее, слева направо(на первой фотографии): две установки нанесения фоторезиста, дальше автоматическая и ручная рамы для засветки по заранее подготовленным фотошаблонам. В автоматической раме присутствует контроль, который учитывает допуск по совмещению с реперными точками и отверстиями. В ручной рамке маска и плата совмещаются руками. На этих же рамах экспонируется шелкография и паяльная маска. Дальше — установка проявки и отмывки плат, но так как мы туда не попали, фотографий этой части у меня нет. Но там ничего интересного — примерно такой же конвейер как в «активации», где заготовка проходит последовательно несколько ванн с разными растворами.
А на переднем плане — огромный принтер, который эти самые фотошаблоны печатает:

Вот плата с нанесенным, экспонированным и проявленным:

Обратите внимание, фоторезист нанесен на места, на которых в дальнейшем не будет меди — маска негативная, а не позитивная, как в в ЛУТ-е или домашнем фоторезисте. Это потому, что в дальнейшем наращивание будет происходить в местах будущих дорожек.

Это тоже позитивная маска:

Все эти операции происходят при неактиничном освещении, спектр которого подобран таким образом, чтобы одновременно не оказывать влияния на фоторезист и давать максимальную освещенность для работы человека в данном помещении.
Люблю объявления, смысл которых я не понимаю:
Гальваническая металлизация
Теперь настал через ее величества — гальванической металлизации. На самом деле, ее уже проводили на прошлом этапе, когда наращивали тонкий слой химической меди. Но теперь слой будет наращён еще больше — с 3 микрон до 25. Это уже тот слой, который проводит основной ток в переходных отверстиях. Делается это вот в таких ваннах:

В которых циркулируют сложные составы электролитов:

А специальный робот, повинуясь заложенной программе, таскает платы из одной ванны в другую:

Один цикл меднения занимает 1 час 40 минут. В одной паллете могут обрабатываться 4 заготовки, но в ванне таких паллет может быть несколько.
Осаждение металлорезиста
Следующая операция представляет собой еще одну гальваническую металлизацию, только теперь осаждаемый материал не медь, а ПОС — припой свинец-олово. А само покрытие, по аналогии с фоторезистом называется металлорезистом. Платы устанавливаются в раму:

Эта рама проходит несколько уже знакомых нам гальванических ванн:

И покрывается белым слоем ПОС-а. На заднем плане видна другая плата, еще не обработанная:
Удаление фоторезиста, травление меди, удаление металлорезиста

Теперь с плат смывается фоторезист, он выполнил свою функцию. Теперь на все еще медной плате остались дорожки, покрытые металлорезистом. На этой установке происходит травление в хитром растворе, который травит медь, но не трогает металлорезист. Насколько я запомнил, он состоит из углекислого аммония, хлористого аммония и гидрооксида аммония. После травления платы выглядят вот так:

Дорожки на плате — это «бутерброд» из нижнего слоя меди и верхнего слоя гальванического ПОС-а. Теперь, другим еще более хитрым раствором проводится другая операция — слой ПОС-а убирается, не затрагивая слой меди.

Правда, иногда ПОС не убирается, а оплавляется в специальных печах. Или плата проходит горячее лужение(HASL-процесс) — когда она опускается в большую ванну с припоем. Сначала она покрывается канифольным флюсом:

И устанавливается вот в такой автомат:

Он опускает плату в ванну с припоем и тут же вытаскивает ее обратно. Потоки воздуха сдувают лишний припой, оставляя лишь тонкий слой на плате. Плата получается вот такая:

Но на самом деле метод немного «варварский» и не очень действует на платы, особенно многослойные — при погружении в расплав припоя плата переносит температурный шок, что не очень хорошо действует на внутренние элементы многослойных плат и тонкие дорожки одно- и двухслойных.
Гораздо лучше покрывать иммерсионным золотом или серебром. Вот тут очень хорошая информация о иммерсионных покрытиях, если кому интересно.
Мы не побывали на участке иммерсионных покрытий, по банальной причине — он был закрыт, а за ключом было идти лень. А жаль.
Электротест
Дальше почти готовые платы отправляются на визуальный контроль и электротест. Электротест — это когда проверяются соединения всех контактных площадок между собой, нет ли где обрывов. Выглядит это очень забавно — станок держит плату и быстро-быстро тыкает в нее щупами. Видео этого процесса можно посмотреть у меня в инстаграме(кстати, подписаться можно там же). А в виде фото это выглядит вот так:

Та большая машина слева — и есть электротест. А вот и сами щупы ближе:

На видео, правда, была другая машинка — с 4 щупами, а тут их 16. Говорят, гораздо быстрее всех трех старых машинок с четырьмя щупами вместе взятых.
Нанесение паяльной маски и покрытие контактных площадок
Следующий технологический процесс — нанесение паяльной маски. То самое зеленое(ну, чаще всего зеленое. А вообще оно бывает очень разных цветов) покрытие, которое мы видим на поверхности плат. Подготовленные платы:

Закладываются вот в такой автомат:

Который через тонкую сеточку размазывает полужидкую маску по поверхности платы:

Видео нанесения, кстати, тоже можно посмотреть в инстаграме(и подписаться тоже:)
После этого, платы сушатся, пока маска перестанет липнуть, и экспонируются в той же желтой комнате, что мы видели выше. После этого, неэкспонированная маска смывается, обнажая контактные пятачки:

Потом их покрывают финишным покрытием — горячим лужением или иммерсионным нанесением:

И наносят маркировку — шелкографию. Это белые(чаще всего) буковки, которые показывают, где какой разъем и какой элемент тут стоит.
Она может наносится по двум технологиям. В первом случае все происходит так же, как и с паяльной маской, отличается лишь цвет состава. Она закрывает всю поверхность платы, потом экспонируется, и неотвержденные ультрафиолетом участки смываются. Во втором случает ее наносит специальный принтер, печатающий хитрым эпоксидным составом:

Это и дешевле, и гораздо быстрее. Военные, кстати, не жалуют этот принтер, и постоянно указывают в требованиях к своим платам, что маркировка наносится только фотополимером, что очень огорчает главного технолога.
Изготовление многослойных печатных плат по методу металлизации сквозных отверстий:
Все, что я описал выше — касается только односторонних и двухсторонних печатных плат(на заводе их, кстати, никто так не называет, все говорят ОПП и ДПП). Многослойные платы(МПП) делаются на этом же оборудовании, но немного по другой технологии.
Изготовление ядер
Ядро — это внутренний слой тонкого текстолита с медными проводниками на нем. Таких ядер в плате может быть от 1(плюс две стороны — трехслойная плата) до 20. Одно из ядер называется золотым — это означает, что оно используется в качестве реперного — того слоя, по которому выставляются все остальные. Ядра выглядят вот так:

Изготавливаются они точно так же, как и обычные платы, только толщина стеклотекстолита очень мала — обычно 0,5мм. Лист получается такой тонкий, то его можно изгибать, как плотную бумагу. На его поверхность наносится медная фольга, и дальше происходят все обычные стадии — нанесение, экспонирование фоторезиста и травление. Итогом этого являются вот такие листы:

После изготовления дорожки проверяются на целостность на станке, который сравнивает рисунок платы на просвет с фотошаблоном. Кроме этого, существует еще и визуальный контроль. Причем реально визуальный — сидят люди и смотрят в заготовки:

Иногда какая-то из стадий контроля выносит вердикт о плохом качестве одной из заготовок(черные крестики):

Этот лист плат, в которой случился дефект все равно изготовится полностью, но после нарезки бракованная плата пойдет в мусор. После того, как все слои изготовлены и проверены, наступает черед следующей технологической операции.
Сборка ядер в пакет и прессование
Это происходит в зале под названием «Участок прессования»:

Ядра для платы выкладываются вот в такую стопочку:

А рядом кладется карта расположения слоев:

После чего в дело вступает полуавтоматическая машина прессования плат. Полуавтоматичность ее заключается в том, что оператор должен по ее команде подавать ей ядра в определенном порядке.

Перекладывая их для изоляции и склеивания листами препрега:

А дальше начинается магия. Автомат захватывает и переносит листы в рабочее поле:

А затем совмещает их по реперным отверстиям относительно золотого слоя.

Дальше заготовка поступает в горячий пресс, а после прогрева и полимеризации слоев — в холодный. После этого мы получаем такой же лист стеклотекстолита, который ничем не отличается от заготовок для двухслойных печатных плат. Но внутри у него доброе сердце несколько ядер со сформированными дорожками, которые, правда, еще никак не связаны между собой и разделены изолирующими слоями полимеризированного препрега. Дальше процесс проходит те же стадии, что я уже описывал ранее. Правда, за небольшим различием.
Сверловка заготовок
При сборке пакета ОПП и ДПП для сверловки его не нужно центровать, и его можно собирать с некоторым допуском — все равно это первая технологическая операция, и все остальные будут ориентироваться на нее. А вот при сборке пакета многослойных печатных плат очень важно привязаться к внутренним слоям — при сверловке отверстие должно пройти насквозь все внутренние контакты ядер, соединив их в экстазе при металлизации. Поэтому пакет собирается вот на такой машинке:

Это рентгеновский сверлильный станок, который видит сквозь текстолит внутренние металлически реперные метки и по их расположению сверлит базовые отверстия, в которые вставляются крепежи для установки пакета в сверлильный станок.
Металлизация
Дальше все просто — заготовки сверлятся, очищаются, активируются и металлизируются. Металлизация отверстия связывает между собой все медные пяточки внутри печатной платы:

Таким образом, завершая электронную схему внутренностей печатной платы.
Проверка и шлифы
Дальше от каждой платы отрезается кусочек, который шлифуется и рассматривается в микроскоп, для того, чтобы удостовериться, что все отверстия получились нормально.

Эти кусочки называются шлифы — поперечно срезанные части печатной платы, которые позволяет оценить качество платы в целом и толщину медного слоя в центральных слоях и переходных отверстиях. В данном случае, под шлиф пускают не отдельную плату, а специально сделанные с краю платы весь набор диаметров переходных отверстий, которые используются в заказе. Шлиф, залитый в прозрачный пластик выглядит вот так:
Фрезеровка или скрайбирование
Далее платы, которые находятся на групповой заготовке необходимо разделить на несколько частей. Делается это либо на фрезерном станке:

Который фрезой вырезает нужный контур. Другой вариант — скрайбирование, это когда контур платы не вырезается, а надрезается круглым ножом. Это быстрее и дешевле, но позволяет делать только прямоугольные платы, без сложных контуров и внутренних вырезов. Вот скрайбированная плата:

А вот фрезерованная:

Если заказывалось только изготовление плат, то на этом все заканчивается — платы складывают в стопочку:

Оборачивается все тем же маршрутным листом:

И ждет отправки.
А если нужна сборка и запайка, то впереди есть еще кое-что интересное.
Сборка

Дальше плата, если это необходимо поступает на участок сборки, где на нее напаиваются нужные компоненты. Если мы говорим о ручной сборке — то все понятно, сидят люди(кстати, в большинстве своем женщины, когда я к ним зашел, у меня уши в трубочку свернулись от песни из магнитофона «Боже, какой мужчина»):

И собирают, собирают:

А вот если говорить о автоматической сборке, то там все гораздо интереснее. Происходит это вот на такой длинной 10-метровой установке, которая делает все — от нанесения паяльной пасты до пайки по термопрофилям.

Кстати, все серьёзно. Там заземлены даже коврики:

Как я говорил, начинается все с того, что на неразрезанный лист с печатными платами устанавливают вместе с металлическим шаблоном в начало станка. На шаблон густо намазывается паяльная паста, и ракельный нож проходя сверху оставляет точно отмерянные количества пасты в углублениях шаблона.

Шаблон поднимается, и паяльная паста оказывается в нужных местах на плате. Кассеты с компонентами устанавливаются в отсеки:

Каждый компонент заводится в соответствующую ему кассету:

Компьютеру, управляющему станком, говорится где какой компонент находится:

И он начинает расставлять компоненты на плате.

Выглядит это вот так(видео не мое). Можно смотреть вечно:

Аппарат установки компонентов называется Yamaha YS100 и способен устанавливать 25000 компонентов в час(на один тратится 0.14 секунды).
Дальше плата проходит горячую и холодные зоны печки(холодная — это значит «всего» 140°С, по сравнению с 300°С в горячей части). Побыв строго определенное время в каждой зоне со строго определенной температурой, паяльная паста плавится, образуя одно целое с ножками элементов и печатной платой:

Запаянный лист плат выглядит вот так:

Все. Плата разрезается, если нужно и упаковывается, чтобы вскоре уехать к заказчику:
Примеры
Напоследок, примеры того, что технотех может делать. Например, конструирование и изготовление многослойных плат(до 20 слоев), включая платы для BGA компонентов и HDI платы:

C со всеми «номерными» военными приемками(да, на каждой плате вручную ставится номер и дата изготовления — этого требуют военные):

Проектирование, изготовления и сборка плат практически любой сложности, из своих или из компонентов заказчика:

И ВЧ, СВЧ, платы с металлизированным торцом и металлическим основанием(фотографий этого я не сделал, к сожалению).
Конечно, они не конкурент резониту в плане быстрых прототипов плат, но если у вас от 5 штук, рекомендую запросить у них стоимость изготовления — они очень хотят работать с гражданскими заказами.

И все-таки, в России производство еще есть. Что бы там не говорили.

Напоследок можно отдышаться, поднять глаза на потолок и попытаться разобраться в хитросплетениях труб:

Что почитать?
Субтрактивный комбинированный позитивный метод в домашних условиях
ДПП в картинках
Несколько разных технологий изготовления ДПП и МПП
Производство в фотографиях(правда, без описания)


Печатные платы. Классификация и самостоятельное изготовление.

Warning: file(http://www.radioingener.ru/wp-content/uploads/Книга1.txt): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/host1754796/radioingener.ru/htdocs/www/wp-content/plugins/shortcodes-ultimate/includes/deprecated/functions.php on line 152

Warning: Invalid argument supplied for foreach() in /home/host1754796/radioingener.ru/htdocs/www/wp-content/plugins/shortcodes-ultimate/includes/deprecated/functions.php on line 211

Warning: array_shift() expects parameter 1 to be array, null given in /home/host1754796/radioingener.ru/htdocs/www/wp-content/plugins/shortcodes-ultimate/includes/deprecated/functions.php on line 215

Warning: Invalid argument supplied for foreach() in /home/host1754796/radioingener.ru/htdocs/www/wp-content/plugins/shortcodes-ultimate/includes/deprecated/functions.php on line 216

Современный мир невозможно представить без электроники. Основой любых сложных механизмов являются печатные платы. На них устанавливаются элементы радиоэлектроники, которые отвечают за различные функции, выполняют определённые задачи. Начинающим радиолюбителям нужно знать какие виды оснований существуют, как их можно сделать самостоятельно.

Печатная плата

Что такое печатная плата?

Плата представляет собой один или несколько слоев диэлектрика, на которых нанесён токопроводящих рисунок. Проводящих рисунков может быть два или из них составлена сеть. Она является основанием для закрепления отдельных элементов радиоэлектроники, чтобы соединить их вместе. Чтобы соединять отдельные детали с токопроводящим рисунком используется припой или паяльная паста.

Технические характеристики

Чтобы иметь общее представление о возможностях, конструкции, предназначении оснований для создания электроники, необходимо знать их технические характеристики:

* тип — многослойные, однослойные, гибкие, жёсткие;

* проводящие слои — до 18 штук;

* максимальные габариты — для многослойных 610х470 мм, односторонние 1200х457 мм, гибкие 5000х340 мм;

* максимальная плотность — 3,2 мм;

* ширина токопроводящих дорожек — от 25 до 75 мкм;

* максимальная плотность наружных слоёв фольги — 400 мкм;

* максимальная плотность внутренних слоёв фольги — 105 мкм;

* допустимый диаметр для сверления — 6.35 мм.

Существует несколько видов финишных покрытий, которые выбираются зависимо от предназначения основания, требуемых характеристик. К ним относятся:

* лужение свинцом;

* лужение без свинца;

* иммерсионное серебро;

* органическое покрытие;

* иммерсионное золочение;

* иммерсионное олово.

Контакты покрываются гальваническим золотом.

Плата, покрытая гальваническим золотом

 

Виды печатных плат

Основания для изготовления электроники разделяются на несколько видов. Они отличаются по конструкции, характеристикам, предназначению. Разновидности плат:

1. Односторонние — конструкции представляющие собой диэлектрические пластинки, на которые с одной стороны нанесён токопроводящий рисунок. Для соединения отдельных контактов на верхнем диэлектрическом слое закрепляются металлические перемычки. Односторонние основания используются при изготовлении недорогой бытовой техники. Связано это с их малой надёжностью, недолговечностью, хрупкой конструкцией.

2. Двухсторонние — на диэлектрическим слое с двух сторон наносятся токопроводящие рисунки, что позволяет устанавливать на основание большее количество электрических элементов, расширить функционал, технические характеристики платы. Отверстия имеют металлизированные вставки. Благодаря им прочность скрепления отдельных деталей с основанием становится надёжнее. Двухсторонние

пластинки считаются наиболее популярными при изготовлении бытовой электроники, компьютеров.

3. Однослойные — элементарная конструкция, состоящая из одной пластинки, прослойки покрытой металлом.

4. Многослойные — сложные конструкции, которые используются при изготовлении сложных приборов, механизмов. Несколько слоёв, расположенных в определённой последовательности, позволяют надёжно закреплять основные компоненты. Количество слоёв выбирается зависимо от требуемых характеристик. Максимальное количество — 40. У многослойных оснований есть ряд недостатков. Это сложности во время изготовления, сложный процесс починки, дороговизна расходных материалов.

5. Гибкие — могут быть односторонними, двухсторонними, иметь несколько слоев. Изготавливаются на гибком основании. Предназначены для соединения отдельных элементов электрического оборудования. Могут заменять собой кабеля.

6. Гибко-жесткие — конструкция представляет собой шлейф, на котором в определённых местах закрепляются жесткие пластинки, с нанесёнными на них токопроводящими рисунками. Используются для соединение жестких плат между собой. Обеспечивают надёжную связку.

7. Жёсткие — плитки, выполненные из жёстких слоев, которые не дают платам деформироваться. Простой пример жёсткого основания — материнская плата, устанавливаемая в компьютерах.

8. Теплопроводные — другие названия этих пластинок ВЧ, СВЧ. Во время изготовления основания используется керамика, чтобы оно выдерживало воздействие высоких температур. Дополнительно керамика повышает жёсткость конструкции.

Зависимо от вида плат изменяются их характеристики, внешний вид, размер, возможности.

Гибкая плата

 

Принципы выбора готовых плат: цены и производители

Магазины радиоэлектроники предлагают покупателям широкий ассортимент печатных плат для изготовления электроники. При покупке важно учитывать некоторые факторы:

1. Размеры основания. Зависит от количества элементов, устанавливаемых на него.

2. Количество слоёв, используемых при изготовлении плитки.

3. Наличие металлических вставок на отверстиях для закрепления радиоэлементов.

4. Двухсторонний или односторонний рисунок.

5. Гибкое или жёсткое основание.

Платы нужны для всех устройств. Ниже представлены усредненная стоимость и производители на примере материнских плат для компьютера:

 

Нет смысла переплачивать за известный бренд, если собрать нужно простой электроприбор. Однако самая дешёвая плата быстро выйдет из строя и может привести к появлению возгорания. При выборе нужно проверять работоспособность электрических дорожек, целостность конструкции.

Материнская плата Asus

 

Материалы для изготовления плат

Существует несколько видов материалов, которые используют при изготовлении оснований для электроники:

1. Главная часть конструкции должна изготавливаться из диэлектрического материала. Это может быть стеклотекстолит, гетинакс.

2. Второй вариант изготовления плат — металлическое основание, на которое наносится диэлектрический слой. Чаще всего используется анодированный алюминий.

3. Для изготовления термоустойчивых оснований применяется фторопласт. Его дополнительно армируют стеклотканью. В состав добавляется керамика для повышения механических характеристик.

4. Чтобы сделать гибкую плитку, применяется каптон.

Материалы можно купить в любом магазине радиоэлектроники.

Изготовление печатной платы своими руками

Самостоятельно изготовить основание для электроприборов легко. Для этого нужно изучить теорию, подготовить расходные материалы, инструменты, выполнить определённый порядок действий. Для изготовления понадобятся:

1. Текстолит — должен иметь слой фольги. Может быть двухсторонним или односторонним. Изготовление фольгированного материала займёт много времени, лучше купить готовую плитку.

2. Утюг, промышленный фен с регулятором температур.

3. 3-д принтер.

4. Ножницы по металлу.

5. Фотобумага с глянцевым покрытием.

6. Зубная щётка.

7. Медицинский спирт.

8. Наждачная бумага мелкой фракции.

9. Скотч, маркер.

10.Сверлильный станок, бормашинка, гравер.

11.Хлорное железо.

К дополнительным инструментам можно отнести паяльник, припой и флюс для монтажа электронных компонентов.

Этапы изготовления платы:

1. На листе текстолита отметить размеры будущей пластинки. Ножницами по металлу вырезать её.

2. Использую наждачную бумагу мелкой фракции, зашкурить стороны текстолита до появления блеска. Обработать торцы, чтобы избавиться от неровностей.

3. Намочить отрезок ткани спиртом, протереть пластинку. Работать нужно в резиновых перчатках, чтобы не пачкать жирными пальцами рабочие поверхности.

4. Заранее нарисовать на компьютере рисунок будущих токопроводящих дорожек. Просчитать соединительные узлы, места стыковки дополнительных компонентов, перемычки.

5. Получившийся рисунок проводников распечатать на фотобумагу.

6. Положить распечатку изображением вниз на текстолит. Подключить утюг к сети, подождать пока он разогреется. Медленными движениями разглаживать бумагу по твердой пластинке. Когда она начнёт желтеть, убрать утюг.

7. Отнести плату с припаянной бумагой к умывальнику. Опустить под струю воды. Зубной щёткой оттереть остатки бумаги.

8. Расположить пластинку под ярким светом чтобы она просохла.

9. Подготовка состава для травления. Понадобится хлорное железо, которое продаётся порошком в магазинах радиоэлектроники. Взять ёмкость из пластика, налить в неё три части воды, добавить одну часть хлорного железа. Тщательно перемешать раствор.

10.Сухую плату опустить в готовую смесь для травления. На скорость обработки платы влияет качество реактивов, температура состава, толщина фольгированного слоя. Для ускорения процесса жидкость можно разогреть. Однако слишком высокая температура повредит рисунок. Чтобы ускорить процесс безопасно, можно присоединить к ёмкости моторчик от телефона. Лёгкие вибрации воздействуют на травление.

11.После травления, плату нужно промыть под проточной водой. Протереть тряпочкой, смоченной в спирте.

12.Следующий процесс обработки — сверление. Для этого желательно использовать специальный станок, гравер или бормашинку. Инструмент закрепляется неподвижно с помощью тисков, чтобы можно было делать точные отверстия. По рисунку происходит сверление. После изготовления отверстий, по поверхности платы нужно пройти наждачной бумагой, удалив заусенцы.

13.Лужение основания. Плата смачивается медицинским спиртом. Его нужно нанести тряпкой лёгкими движениями без прижимов. Смочить другую тряпку в растворе для травления. Смазать стороны платы. Нагреть паяльником припой, быстрыми движениями нанести его на электрические каналы.

14.Наждачной бумагой с мелкой фракцией пройтись по сторонам плитки.

Лужение считается необязательным этапом при изготовления плат. Однако его делают из-за нескольких преимуществ:

1. Увеличивается показатель устойчивости к коррозии.

2. Толщина токопроводящего слоя увеличивается, благодаря чему снижается сопротивление, улучшается эффективность платы.

3. Проще припаивать радиодетали.

При соблюдении правил проведения работы сборка самодельной платы не покажется сложным процессом. Перед закреплением других деталей важно провести проверку токопроводящих рисунков.

Более подробно про различные способы изготовления печатных плат почитайте в нашей статье

Изготовление печатной платы в домашних условиях

 

Типичные ошибки при конструировании плат

При сборке самодельных оснований люди допускают различные ошибки. К наиболее часто встречаемым относятся:

1. Неправильно выбранная ширина токопроводящих дорожек. Это приводит к потере напряжения, перегреву проводников, низкой механической прочности. Чтобы не столкнуться с такими проблемами, необходимо делать максимально допустимую ширину токопроводящих дорожек.

2. Неправильное проектирование цепей питания. Приводит к снижению выходящего напряжения, большие пульсации на выходе, помехам

вместо постоянного напряжения. Решение проблемы — максимальная ширина дорожек, подающий конденсатор из керамики.

3. Проблемы заземления. Использование обычного проводника минимальной ширины. Приводит к нестабильности рабочего процесса, перегреву основания. Решение — использование отдельного слоя изоляции для разводки.

4. Небольшой зазор между медными проводниками, нанесёнными на плату. Приводит к нарушению целостности основания. Необходимо увеличить расстояние между проводниками, чтобы справиться с проблемой.

5. Большое количество соединительных отверстий на одной пластинке. Это приводит к увеличения токопроводящих дорожек, повышению сопротивления. Использовать максимум два отверстия на пластинках малого размера.

Существуют и другие проблемы. Однако они менее популярны и требуют вмешательства специалистов.

Печатные платы являются основанием электрических приборов, механизмов. На них напаиваются ключевые элементы, которые выполняют определённые функции. Собрать основание можно своими руками. Для этого нужно определиться с тем, где оно будет использоваться, нарисовать чертёж, подобрать рисунок, выполнить определённую последовательность действий.

Но печатные платы это лишь основа для изделий на нее припаиваются диоды или стабилитроны или транзисторы или другие элементы радиоэлектронных схем, о который вы можете прочесть на нашем сайте — ссылка на оглавление.

Изготовление печатных плат ЛУТ'ом от А до Я / Хабр

Доброго времени суток! Среди моих знакомых бытует мнение, что самостоятельно изготавливать печатные платы (ПП) бесполезно. Учитывая, что современные компоненты далеко ушли от DIP корпусов, то кустарно травить платы под них даже и не стоит пытаться. Тем не менее необходимость в быстрой оценке того или иного компонента всегда есть, и ждать несколько суток заказанной платы времени нет. И это учитывая, что заказ за «несколько суток» дорог, для одноразовой задачи.

В данной статье я хочу изложить порядок действий, которые позволят быстро изготавливать ПП под компоненты в корпусах подобных TQFP-100, то есть с ногами 0,2мм и таким же зазором, и при этом сводить брак к минимуму.

Конечно это способ изготовления плат только для прототипов, но он снижает риски ошибиться при создании конечного устройства.

В сети много статей и роликов с подобными советами, но как правило там не охвачены все нюансы тех или иных действий. Здесь же хочу показать весь процесс, который в домашних условиях позволит за час-полтора изготовить приемлемый экземпляр ПП.

Под катом подробности и трафик.

Минимальный набор материалов:

  1. Правильная бумага (ниже остановлюсь на понятии «правильная»)
  2. Персульфат аммония
  3. Ёмкость для травления
  4. Шкурка «нулевка»
  5. Кисточка (натуральная или из стекловолокна)
  6. Зубочистка

И, конечно, лазерный принтер и утюг.

Весть процесс покажу на изготовлении ПП под оценочную плату микросхемы ATxmega128A1U-AU (оценка заявленного аппаратного крипто модуля, EBI и вообще), и платы для подключения 7 дюймового дисплея к STM32F407VE

Для оценочных плат стараюсь делать разводку только на одной стороне, там где пересечений не избежать, ставлю резистор с сопротивлением=0 и корпусе 0805, пропуская дорогу под ним. Если пересечений много и точно нужно два слоя, то травлю каждый слой на отдельном текстолите (соединяю потом по VIA).

Первый этап

Подготовка текстолита.

Односторонний текстолит с толщиной меди 17-35мкм отмывается от грязи средством для посуды под теплой водой, потом капля моечного средства наносится на шкурку с зерном P800 или меньше и будущая плата шлифуется до образования шероховатостей по всей площади. Момент со шкуркой обязателен! Таким способом медь до дыр не затрем, но обеспечим хорошее прилипание тонера. После шлифовки поверхность промывается чистой водой, вытирается насухо и откладывается досыхать.

К моменту переноса макета, текстолит должен быть сухой, без окислов, жирных пятен и заметными шероховатостями.

В одной из статей видел рекомендацию, что медный слой надо подержать на солнце, до появления сизой оксидной пленки, в нашем случае это не нужно.

Второй этап

Подготовка макета.

Для ATxmega128 сделал такую вот разводку:

если нужно, то есть PDF.

На плате сама xmega, преобразователь интерфейса ft232 и стабилизатор lp2985, а так же мелочёвка- разъем PDI, USB, светодиодики на весь порт «B». Рисунок платы несколько отличается от того, что буду травить. Перед печатью добавил надписей и мелочей для усложнения.

Все дороги на верхнем слое (TOP), поэтому печатаем макет в отзеркаленном виде.

Наличие в принтере «неэкономного» режима для жирной печати необязательно. Я печатал на разных принтерах с печатью «по дефолту» и проблем не было, за исключением одного момента: Принтеры Brother (а конкретно HL-l2340 и HL-l2250) очень непочтительно относятся к переводу DPI в реальный размер, поэтому рисунок может поплыть по размерам, а это критично, когда на 1мм две дороги должны уместиться.

Теперь бумага.

Никаких глянцевых журналов и подложек от самоклейки!

И даже от китайской бумаги для ЛУТа я тоже отказался (слишком тонкая и мнется при печати)
Бумага должна быть плотной — минимум 150гр на квадратный сантиметр, должна быстро прилипать при нагревании и не ёрзать под утюгом, хорошо набухать в воде.

Лучший вариант- глянцевая фотобумага, не слишком хорошего качества. Не «слишком хорошего качества» это значит не премиум и не LOMOND. То есть дешевая глянцевая фотобумага. На фото выше, одна из таких и показана, есть еще «Фотобумага глянцевая», выпускаемая под брендом крупного магазина компьютерной техники, это клон той, что на фото (складывается впечатление, что они с одного завода, но в разных упаковках).

Данная бумага сразу прилипает к меди под утюгом и не сдвигается при проглаживании (матовая бумага не содержит глянцевого слоя и поэтому не липнет, а горячий тонер легко смазать), она легко отходит в теплой воде (в отличии от LOMOND и бумаги с приставкой «премиум»).

Итак пора печатать. Печатаем макет, потом, не касаясь лицевой стороны пальцами, обрезаем края. и готовим утюг.

Третий этап

Перевод макета.

Необходимо сначала подготовить емкость с водой, в которой будет замачиваться плата. У меня роль этой емкость выполняет обычный тазик. Наливается горячая вода ( градусов 50, то есть чтобы рука уже не терпела), литров пять, и в ней растворяется немного моющего средства (немного, это столовая ложка).

И идем к утюгу.

Подготовленный текстолит кладем на ровную поверхность и накрываем распечатанным макетом, утюгом прогретым до максимальной температуры проглаживаем по центральной линии, а потом от центра к бокам. При первом проглаживании распечатку лучше придерживать, чтобы не сдвинулась. После первого проглаживания лист фотобумаги прилипает к меди и сдвинуть его утюгом уже можно не бояться. Теперь можно носиком утюга пройтись по всем краям и местам, где на вид бумага отходит. Потом секунд тридцать просто прогреваем по всему объему.

Не смог удержаться чтобы в статье про ЛУТ не показать главное действующее лицо:

После проглаживания, не остужая кидаем плату воду. То есть не удаляя бумагу, подхватываем горячую пинцетом и кладем в подготовленную емкость с водой. 10 минут перерыв на отмачивание.

Четвертый этап

Очистка от бумаги.

По истечении 10 минут достаем плату из воды и удаляем бумагу. Как бы долго плата не лежала в воде, вся бумага не отстанет. Точнее сама то бумага без проблем, а вот глянцевый слой, который нам обеспечивал хорошее прилипание останется в узких местах.

как-то так:

Вообще тонер держится очень надежно, тереть можно пальцами, ластиком или губкой для мытья посуды, но между дорожками вытащить глянец сложно, достаточно дать плате высохнуть, как такие места будут видны.

Есть три пути.

  1. Замочить плату в спирте еще на 10-15 минут, глянцевый слой набухнет и смоется мягкой тряпочкой. Это не наш способ, в виду его кощунственности.
  2. Замочить плату в растворителе «анти-силикон», который продается в строительных магазинах. Не знаю что там в качестве активного вещества (на бутылке не написано), но глянцевый слой тоже разбухает и удаляется, тонер при этом остается. Это способ на любителя, средство довольно вонючее.
  3. И третий способ — удалить механически, что не очень долго.

Для этого надо обратно намочить плату и острым предметом удалить лишнее. Лучше всего использовать острую зубочистку. Мокрый глянец удаляется без проблем, а дерево зубочистки не сносит тонер. Особо замечу, что нельзя использовать иголки! Не потому, что можно снять тонер (он то прилеплен хорошо), а потому, что железо оставляет на меди следы. Да! сам в шоке, знаю что медь мягче железа, тем более нержавейки. Но факт имеет место быть. Там где водил иглой медь травится очень медленно.

Пример из практики:

После удаления остатков глянцевого слоя, промываем плату с моющим средством, удаляя «пальчики». Оставляем высыхать.

Почти специально оставил несколько мест, где глянец не удален (потом увидим, что не так все страшно).

Пятый этап

Травление.

Травлю персульфатом аммония, не скажу, что он лучше хлорного железа, просто от железа больше грязи (ну да, персульфат аммония это же отбеливатель, какая тут грязь) и хлорное железо труднее хранить — гигроскопичен и как следствие сплавляется в большие куски, которые надо дробить.

Травлю при температуре 40 градусов. На плату с медью 35мкм — 15 минут, С медью 17мкм — 5 тире 7 минут. Можно и при комнатной температуре 17мкм травится порядка 20 минут, 35мкм в теории 40 минут, но это уже и не помню.

В домашних условиях можно травить в любой емкости, для этой статьи специально травил в обычной пластиковой емкости, что накладывает определенные дополнительные действия от исполнителя. Но если ПП делаются часто, то можно заделать себе ванночку для травления:

главным дополнением которой — насос для перемешивания раствора, он освобождает от «определенных дополнительных действий». Насос нужен мембранный, с пластиковой мембраной.
Тот что на рисунке, купил в интернет магазине для робокрафтеров.

Внутри емкости перегородки, для размещения нескольких ПП.

На фото травятся две стороны платы под STM32F407VE подключаемую к семи дюймовому дисплею.
Под xmega вытравлю в открытой пластиковой.

Делаем раствор — пол литра воды плюс 100-150г персульфата аммония. Вообще рекомендуется 250 грамм на пол литра, но в кустарных условиях при остывании раствора и испарении воды, выпадают кристаллы и намертво прилепляются на медь, как итог непротравленные точки.
Как писал выше — температура 40 градусов.

Кидаем в раствор плату и начинаем кисточкой перемешивать раствор, чтобы травление шло равномерно. Также кисточкой можно удалять с платы хлопья глянцевого покрытия, если при подготовке не все удалились.

У меня плата с медью 35мкм, через 10 минут уже видно текстолит:

Жду еще 5 минут и все готово.

Надо сказать, что в процессе травления лучше передержать плату, чем недодержать. И дополнительное время может быть довольно большим. Один раз я увидев недотравленный полигон закинул платку обратно и забыл про нее часа на три, когда вспомнил, думал что ее разъело насквозь. Однако ни одного подтравливания не заметил:

вот этот передержанец (уже облуженный):

Итак, вытащили нашу плату, помыли и посмотрели на свет:

Если нашли лишнюю медь, то можно кинуть обратно в раствор.

Если все хорошо, то ЛУТ окончен!

Смываем ацетоном тонер и облуживаем, если в ближайшее время облуживание не предусмотрено, то хранить плату можно не смывая тонер, он будет защитной оболочкой.

Итог:

Выше я помечал места на плате, где глянцевое покрытие осталось. Те места, которые глянец закрывал герметично (уголок на плате), там не протравилось, там где небольшие перекрытия между дорожками — все нормально, раствор туда пробрался. Если использовать емкость с насосом, то глянцевое покрытие можно вообще до конца не оттирать, просто время травления увеличивается в два раза.

Пара фраз о лужении. Поскольку ЛУТом делаются платы временные или для себя, то особо возиться с облуживанием не стоит (ИМХО), можно просто пройтись паяльником по тем местам где будет пайка, а потом все покрыть лаком.

Но если компоненты на плате будут перепаиваться или плата будет долгое время эксплуатироваться, то лучше залудить. Либо паяльником пройти по всей меди, либо если есть фен, то паяльной пастой.

Я мешаю пасту с флюсом примерно 1 часть пасты и 5 частей флюса, покрываю всю плату и прогреваю феном:

во время прогрева, текстолитовой кисточкой (известная как «вечная кисточка») сгоняю припой к краям платы, Лишнего припоя на дорожках при таком способе не остается, а там где его не хватает, можно пригнать с краев. Не воздушный нож, конечно, но тоже довольно аккуратно.

Главная проблема при использовании паяльной пасты, это лишние шарики, присохшие к плате. Вот на фото их хорошо видно:

Поэтому после лужения, плату надо хорошенько промыть и оттереть тряпочкой, смоченной в ацетоне.

Плату облудили, теперь точно все. Монтаж. Проверка:

Задача выполнена. На данную плату ушло не больше часа (с учетом фотографирования этапов).

Параллельно у меня травилась вторая плата, точнее две стороны одной платы. И если первая платка была скорее для демонстрации (можно было и на DIP переходнике выполнить, а не подобие ардуины делать), то вторая нужна была для конкретной цели и плести косы проводов на переходнике не вариант (да еще не факт, что помех не нахватает при подключении через fsmc)

Две стороны:

Как видно, я не стал травить двухсторонний текстолит, проходя убийственную процедуру совмещения двух шаблонов на этапе работы утюгом. Лучше это сделать сейчас.

Сверлим отверстия на VIA у всех плат, берем ножки от резисторов и штук 5 припаиваем к одной стороне, потом нанизываем на них вторую сторону, пропаиваем с двух сторон. Все платы совмещены! Теперь можно пропаять все отверстия.

Как-то так:

Все готово!

Вы, должно быть заметили сильный брак на одной из сторон:

Бумага после принтера наэлектролизована и собирает на себя все подряд. Особенно волосы, особенно кошачьи! Так что я не досмотрел.

А вот и виновник:

Контролирует все выполняемые процессы.

После восстановления дорожки, ПП готова и устройство собралось:

Правда, это была плата как раз временная — проверить правильность подключений, чтобы потом развести по-человечески и заказать.

Вот и все. Удачи в ваших начинаниях!

7 правил проектирования печатных плат / Хабр

Приветствую! В процессе обсуждения статьи товарища KSVl была озвучена необходимость небольшого пособия по проектированию печатных плат. Очень часто на хабре я вижу статьи в стиле «5 правил оформления кода» или «5 шагов к успешному проекту», то есть очень удобные собрания тезисов по определенной теме. К сожалению подобных статей по разработке электроники мало и это плохо…

Я обещал пользователю KSVl и некоторым другим читателям, статью с базовыми принципами проектирования печатных плат (ПП), так же приглашаю к ознакомлению всех любителей попаять за чашечкой кофе!



Пролог


Все описанные в статье правила, являются самыми базовыми и ориентированы исключительно на совсем начинающих разработчиков для которых электроника просто хобби. Сразу хочу отметить, что данная статья не претендует на абсолютную истину и все объяснения даны в вольной форме.

Наверняка найдутся люди, которые скажут: «Да и так ведь работает, зачем что-то менять?». И вот тут увы, я не готов тратить силы и переубеждать вас. Одни хотят все делать хорошо, качественно и надежно, другим же не дано понять этого желания.

Источники информации на которых базируются описанные в статье правила:

  1. Курс общей физики и электротехники. Все в пределах 1-го курса ВУЗа
  2. Книги Говарда Джонса «Конструирование высокоскоростных цифровых устройств: начальный курс черной магии» и «Высокоскоростная передача цифровых данных: высший курс черной магии»
  3. Стандарты IPC, например, IPC-2221A. Бывает перевод на русском (старая версия) и оригинал последних версий на английском
  4. Собственный опыт

Правило №1 — Ширина проводника


Ошибка — очень часто начинающие разработчики используют ту ширину проводников (дорожек), которая стоит по умолчанию в используемой САПР. В упомянутой ранее статье, автор использовал EasyEDA и там базовое значение ширины стоит 6 mils, то есть около 0.15 мм. Данная ширина проводников использована практически везде и это плохо, ибо ведет к ряду проблем.

Проблема №1 — падение напряжения. Все мы помни закон Ома из которого следует, что чем меньше площадь сечения проводника, тем больше его сопротивление. Чем больше сопротивление проводника, тем больше на нем упадет напряжение.

Проблема №2 — нагрев проводника. Тут все тот же закон Ома, мощность выделяемая на проводнике пропорциональна его сопротивлению, то есть чем больше сопротивление, тем больше тепла выделится на проводнике. Дорогу 0.15 мм ток в 5-10А легко испарит.

Проблема №3 — паразитная индуктивность. Этот момент к базовым вряд ли уже относится, но знать про него надо. Чем меньше сечение проводника, тем больше его индуктивность. То есть любой проводник на самом деле не просто «кусок меди», это составной компонент из активного сопротивления, индуктивности и паразитной емкости. Если эти параметры слишком высоки, то они начинают негативно отражаться на работе схемы. Чаще они проявляются частотах больше 10 МГц, например, при работе с SPI.

Проблема №4 — низкая механическая прочность. Думаю не надо объяснять, что дорожка шириной 2 мм более прочно прикреплена к текстолитовой основе, чем дорожка 0.15 мм. Ради интереса возьмите заводскую ненужную плату и поковыряйте ее.

Решение — используйте максимально возможную ширину проводников. Если проводник можно провести с шириной 0.6 мм, то это лучше, чем провести его шириной 0.15 мм.

Пример:

1) Плохо

2) Хорошо

Правило №2 — Подключение к выводам


Под выводами подразумевается контактная площадка компонента (pad), переходные отверстия (via) и прочие объекты, которые на плате мы соединяем с помощью проводников (дорожек).

Ошибка — бывают две крайности. В одной, разработчик совершает ошибку из правила №1 и подключает дорожку 0.15 мм к выводу smd резистора 1206. В другом случае наоборот, использует проводник ширина которого равна ширине контактной площадки. Оба варианта плохие.

Проблема №1 — низкая механическая прочность. При нескольких попытках перепайки компонента, площадка или дорожка просто отслоятся от текстолитовой основы печатной платы.

Проблема №2 — технологические проблемы с монтажом платы. Хотя это станет проблемой, если вы начнете заказывать в Китае не только платы, но и сборку. Вам конечно соберут, но % брака вырастает.

Решение — ширина проводника, подключаемого к контактной площадке, должна составлять примерно 80% от ширины этой площадки.

Пример:

1) Плохо

2) Хорошо

Размер площадки конденсатора 1206 в данном случае составляет 1.6 х 1 мм. Соответственно для подведения сигнала снизу используется дорожка равная 80% от ширины площадки, то есть 0.8 мм (80% от 1 мм). Для подведения сигнала справа используется дорожка толщиной 1.2 мм (примерно 80% от 1.6 мм). Ширина площадки у микросхемы в корпусе SOIC-8 равна 0.6 мм, поэтому подводить нужно сигнал с помощью дорожки около 0.5 мм.

Стоит понимать, что данный вариант является идеальным. Переход из 1.2 мм в 0.5 мм вам наверняка не понравится — лишняя возня. Его можно избежать. Для этого обычно принимают ширину дорожки относительно минимального pad-а (площадки), то есть в данном случае можно сделать вот так:

Как видите, я выбрал ширину проводника по минимальной площадке, то есть по площадке вывода микросхемы в корпусе SOIC-8. Такой упрощение допустимо, но его стоит применять с умом.

Правило №3 — Цепи питания


Теперь рассмотрим случай, когда упрощение в отношение правила №2 просто недопустимо, а именно — проектирование цепей питания. Данной правило опирается на два предыдущих и является частным, но пожалуй самым критичным случаем.

Ошибка — пренебрежение правилами №1 и №2 при проектирование цепей питания.

Проблема №1 — на выходе вашего стабилизатора напряжения строго +3.3В. Вы включаете устройство и наблюдаете, что микросхема ведет себя неадекватно, АЦП измеряет не точно и периодически выключается. Вы измеряете напряжение на ногах потребителя (микросхемы) и обнаруживаете вместо +3.3В всего лишь +2.6В.

Проблема №2 — ваш DC-DC преобразователь не запускается, либо на выходе имеет большие пульсации.

Проблема №3 — в попытках найти неисправность, вы ставите щуп осциллографа на линию +3.3В и обнаруживаете там вместо постоянного напряжения какие-то страшные пульсации и помехи.

Решение — соблюдаем особо строго и фанатично правила №1 и №2. Дорожки максимально широкие. Питание должно приходить на микросхему через керамический конденсатор, который по возможности ставят ближе к выводу этой микросхемы.

Пример:

1) Плохо

2) Хорошо

Что я сделал чтобы стало хорошо:

1) Дорожка питания VCC3V3 теперь подходит не в обход конденсатора, а через него. То есть сначала на конденсатор, а затем уже на вывод микросхемы

2) Переходное отверстие (via) я использовал размером 1.2/0.6 мм. Да, согласно требованиям для 4 класса точности (стандартного), я могу использовать переходное отверстие размером 0.7/0.3 мм, но делать этого не стал и применил более габаритный переход. Это позволило уменьшить его сопротивление и пропустить больший ток

3) Шина питания, которая приходит от стабилизатора у меня теперь не 0.3 мм, а 2 мм! Не бойтесь делать широкие проводники. Такой подход минимизирует падение напряжения в цепи и уменьшит индуктивность проводника

Правило №4 — Земля


О влияние качества проектирование земляной шины (GND) можно говорить вечно, но любой разговор сводится к простой сути: стабильно и работоспособность устройства в наибольшей степени зависит именно от проектирование земли. Данная проблема очень объемная и требует глубокого изучения, поэтому я дам самые базовые рекомендации.

Ошибка — трассировка цепи GND (земли) обычным проводником, да еще и минимальной ширины. Это просто к-к-к-комбо!

Проблема №1 — нестабильность работы устройства и сильные помехи в цепях, особенно в цепях питания.

Проблема №2 — нагрев и часто обрыв тонкого проводника, т.к. в нем действует большой ток.

Решение — использовать полигон для разводки цепи GND, а в идеале отдельный слой, который полностью выделен для данной цепи, например, нижний слой.

Пример:

1) Плохой

2) Хороший

Как видите, вместо обычного проводника я применил заливку сплошным полигоном. Такое решение обеспечило мне огромную площадь сечения, ведь полигон это просто очень большой проводник. Только иногда такое решение имеет недостаток, например, когда плотность монтажа высокая и другие проводники разрывают сплошной полигон, как тут цепи LED1..3 разрывают кратчайший путь между выводом микросхемы и конденсатора (GND):

Тут нам поможет, упомянутый ранее, отдельный слой GND. В двухслойной плате в идеале под него выделить нижний слой, а в многослойной плате — один из внутренних слоев:

Таким образом мы восстановили кратчайший путь для тока по цепи GND, а помог в данном случае нижний слой (синий цвет), который из себя полностью представляет земляной полигон. Переходные отверстия (via) около контактных площадок обеспечили для них максимально короткое соединение с нижним слоем земли.

Конечно это идеальный случай и иногда не получится его реализовать без удорожания платы, поэтому тут решение за вами. Порой «супер» надежность и не нужна, тут важно найти для своей задачи золотую середину между стоимостью и качеством.

Правило №5 — Ширина зазора


Минимальное значение зазора между медными проводниками на печатной плате, нам диктуют технологические требования. Для 4-го (стандартного) класса значение составляет 0.15/0.15 мм или 6/6 mils. Максимальная ширина ограничена лишь вашей фантазией, габаритами платы и здравым смыслом.

Ошибка — зазор недостаточно большой, обычно оставляют значение по умолчанию около 0.15 мм.

Проблема №1 — электрический пробой. Короткое замыкание возникает, когда 2 проводника с разным потенциалом замыкают, например, металлическим предметом и ток резко возрастает. К сожалению идеальных диэлектрических материалов не бывает и в какой-то момент любой материал начинает проводить ток. Пример тому — изоляторы на ЛЭП, иногда и их пробивает. Данное явление происходит, когда превышено значение критического напряжения пробоя. По этой же причине и стеклотекстолит, являющийся основной большинства печатных плат, в какой-то момент может начать пропускать ток.

Решение — увеличение расстояния между проводниками. Напряжение пробоя зависит от типа материала и от толщины/ширины изолятора. В случае печатных плат — расстояние (зазор) между проводниками как раз является тем параметром, который влияет на критического значение напряжения пробоя. Чем больше расстояние между проводниками, тем большее напряжение необходимо чтобы пробить его.

Так же хочется сказать, что пробой по стеклотекстолиту не всегда самая актуальная проблема. Воздух, который окружает плату, тоже является диэлектриком, но при определенных условиях становится проводником, вспомните грозу. Воздушный электрический пробой большая проблема в электронике, особенно если учитывать, что воздух может быть сухой, а может и иметь влажность 90-100%, например, в тропиках или на Севере.

Пример:

Условимся, что в данном примере есть 3 проводника: выпрямленное сетевое напряжение +310В, низковольтная линия питания для микроконтроллера +3.3В и шина земли (GND).

1) Плохой

2) Хороший

Почему 0.3 мм плохо, а 0.8 мм уже хорошо спросите вы и в качестве ответа приведу вам 2 источника:

1) Обычные физика и электротехника. Данные в них разнятся из-за различных методик измерений и прочего, но наиболее реалистичная цифра для сухого воздуха составляет 2 кВ/мм. Тут многие испугаются цифры и подумают: «У меня же нет таких напряжений» и это будет ошибкой. Данное значение характерно лишь для сухого воздуха, который встретить в реальных условиях удается редко. И тут цифры уже куда скромнее, например, при влажности 100% напряжение пробоя воздуха составляет всего 250 В/мм! А еще на значение напряжения пробоя влияет запыленность воздуха и платы, а так же атмосферное давление (кривая и закон Пашена).

2) Стандарт IPC-2221, ссылку на который я давал в начале. Интересует нас таблица 6-1, которая выглядит вот так:

Как видите в таблице для большое количество значений даже для нашего конкретного случая 301-500В. Если посмотрим, то увидим значение 0.25 мм для закрытых проводников на внутренних слоях, то есть в «идеальных» условиях без доступа пыли, грязи и влаги. Если устройство будет работать где-то в горах и проводник находится на внешних слоях (все проводники в случае 2-х слойной платы) на высоте до 3000 метров, то там минимальный зазор уже 2,5 мм, то есть в 10 раза больше. Если же мы эксплуатируем устройство на большей высоте, то зазор необходим уже в 12.5 мм! Стоит сделать замечание — такой большой зазор требуется если наша плата не покрыта защитными составами, например, лаком или компаундом. Как только появляется защитное покрытие, то мы видим уже более адекватные значения: 0.8 и 1.5 мм.

Поэтому в «хорошем» примере по мимо обеспечения зазора 0.8 мм, необходимо так же покрыть плату защитных составом, например, лаком после завершения монтажа устройства, его отмывки и сушки. В противном случае необходимо увеличить зазор!

Правило №6 — Гальванический зазор


Ошибка — приравнивание диэлектрического зазора к гальваническому. По сути они очень похожи, но по требованиям все строже, когда дело доходит до гальванической развязки. Ярким случаем является развязка схемы управления и силовой части с помощью реле или оптрона, когда зазор между развязанными сторонами выбирается так же 0.8 или 1,5 мм.

Проблема №1 — пробой изоляции, выход из строя системы управления и прочего дорогого оборудования.

Решение — увеличение порога электрического пробоя. Стандартными значениями обычно являются напряжения 1,5 кВ, 2,5 кВ и 4 кВ. Если ваше устройство работает с сетевым напряжением, но человек напрямую с ним не взаимодействует, то напряжение развязки в 1,5 кВ будет достаточным. Если предполагается взаимодействие человека с устройством, например, через кнопки и прочие органы управления, то рекомендую применить изоляцию с напряжением 2,5 кВ и более.

Пример:

1) Плохой

Что плохого спросите вы, ведь зазоры на плате есть, их можно сделать и 1,5 мм. Дело в том, что даже если сделать зазор 2 мм, то этого будет недостаточным для обеспечения изоляции. Самым «слабым» местом должно быть расстояние между выводами управления реле (1-2) и выводами силовыми (3-8). Так же надо учитывать, что пробой может быть не только между проводниками на одном слое, но и на разных — насквозь плату через стеклотекстолит.

2) Хороший

Что было сделано для улучшения ситуации:

а) Появилась четкая граница между низковольтной и высоковольтной частью. Теперь проводник +3.3В не проходит в высоковольтной области +310В, полигон GND не выходит за границу низковольтной часть, соответственно и пробоя не будет. Так же в зоне/границе гальванической развязки не должно быть вообще ничего.

б) Изолирующая зона освобождена от паяльной маски. Маска — тоже слабое место и в зависимости от качества ее пробьет раньше, чем стеклотекстолит. Это делать не обязательно в общем случае, но если с устройством взаимодействуют люди, то настоятельно рекомендую.

в) Как я выше писал, слабое место — расстояние между управляющими и силовыми выводами реле. Везде я смог сделать изолирующую зону 4 мм, а тут только 2.5 мм. От маски мы очистили, от проводников тоже и единственное через что может произойти пробой по плате — стеклотекстолит. Поэтому убираем и его, я сделал вырез под реле шириной 2.5 мм и убрал весть текстолит между выводами. Данная операция тоже не обязательна, но существенно повышает надежность и безопасность вашего устройства.

Правило №7 — Переходные отверстия


Ошибка — очень часто наблюдаю картину, когда на 2-х слойной печатной плате для того, чтобы соединить 2 контактные площадки, использую 3..4… или даже 5 переходных отверстий.

Проблема №1 — переходных отверстий (via) становится слишком много на плате и это ограничивает место под проводники, что приводит к удлинению цепей, а следовательно и к увеличению их сопротивления. Уменьшает устойчивость цепей и сигналов к помехам.

Решение — используйте минимальное количество переходных отверстий: если вам нужно соединить 2 контакта на разных слоях, то не используйте более 1-го переходного отверстия. Если 2 контакта находятся на одном слое и вы не можете соединить их напрямую, то используйте максимум 2 переходных отверстия. Если вам нужно больше переходов для соединения, то что-то вы делаете не так — тренируйте логику и переразводите участок платы, который привел к проблеме.

Пример:

1) Плохо

2) Хорошо

Для соединения использовано минимальное количество переходных отверстий (via), что дает больше свободного места для других проводников и обеспечивает минимальные паразитные параметры проводника.

Несколько общих советов


  • Не используйте автотрассировщики! В «сыром» не настроенном виде они выдают ужасный результат, который даже самую светлую идею превратит в гуано. Для того, чтобы автотрассировщик работал хорошо, ему необходимо прописать определённые правила, которые скажут ему, что дороги надо не 0.15, а 1 мм и так далее. Для адекватного результат даже на простых платах приходится прописывать сотню, а то и две, этих самих правил. В Altium Designer под них выделен целый раздел, например. Если вы любитель и у вас не стоит задачи спроектировать свою плату для ноутбука, то разводите плату руками — выйдет быстрее и качество будет на высоте
  • Не ленитесь переделывать плату. Часто бывает, что вы сделали плату на 90%, но дальше все стало туго и вы начинаете нарушать «правила» и лепить гуано. Откатитесь назад, иногда приходится откатываться в самое начало, сделайте работу качественно и на этапе отладки устройства вы сэкономите очень много времени и нервов
  • Перед тем как начать проектировать плату, посмотрите несколько open source проектов, например, на хабре или hackaday. Главное не копируйте оттуда чужие очевидные ошибки
  • Если у вас есть знакомые разработчики электроники, пускай тоже любители — дайте им на проверку. Свежий взгляд на ваш проект позволит избежать очень много ошибок

Заключение


Надеюсь данная статья станет полезной для начинающих электронщиков и избавит их хотя бы от самых простых ошибок. Думаю не мало людей в данных правилах увидят и свои недочеты, но не стоит от этого правила слепо копировать. Всегда думайте головой и ищите лучший вариант, иногда и 4 переходных отверстия для 1-й цепи допустимы, если это позволяет вам улучшить конечный результат.

Те, кому данного материала мало — предлагаю ознакомиться со стандартами IPC по диагонали, сильно вчитываться смысла нет, а так же прочитать начальный курс «черной магии» от Говарда Джонса. В ней разобраны и физические принципы проектирования, а так же приводится множество рекомендаций по проектированию стандартных цепей и интерфейсов. Это раньше высокоскоростные цифровые цепи были чем-то магическим и возвышенным, но сегодня на дворе 2018 и с ними сталкиваются даже совсем новички, например, при подключение датчиков и памяти по SPI или дисплеев.

Перестаньте травить печатные платы дома — заказывайте их на производстве / Хабр
В последней своей статье про Домофон с MQTT я проводил опрос на тему того, какую статью написать следующей. Выбор пал на заказ производства печатных плат, вот собственно немного расскажу об этом. Если статья зайдет, напишу по следующей теме из голосовалки.

Я ни в коем разе не принуждаю сразу выливать ваше хлорное железо / перекись водорода, оставьте их для макетирования. Я лишь хочу показать, что заказать платы на производстве в наше время совсем не сложно, как может показаться начинающему радиолюбителю. Есть в этом что-то магическое — подержать в руках красивую плату собственного изготовления.

Для меня электроника выступает в качестве хобби, и я, разводя очередную плату, просто отсылаю ее на производство и возвращаюсь к ней только после получения готовых плат. Таким образом, у меня может крутиться несколько проектов одновременно. Я не травлю платы сам и макетирую на проводах только в крайнем случае.

В статье затрону минимальную подготовку к производству плат в программе Eagle CAD. Другими программами не пользуюсь, но думаю смысл будет примерно таким.

Ну, начнем с того, что Eagle CAD (далее буду иногда называть его Орлом) — сама по себе программа платная, но есть бесплатная версия с ограничениями. На один проект допускается рисовать не более 2х листов схемы и разводить не более 2х слоев платы площадью до 80 см2. Мне пока что хватает. Зато всегда пользуюсь актуальной версией с сайта производителя, а не каким-то ломаным старьем.

Учить работать с программой я не буду, для этого есть хорошие статьи от DiHalt’а (ссылка будет в конце статьи), а лишь быстро пробегусь по тому, что нужно сделать для заказа плат.

Разводка платы и DRC контроль

Перед началом разводки необходимо ознакомиться с нормами, которые допускает производитель при изготовлении — это минимально допустимые размеры и зазоры. От них зависит, насколько корректную плату вы получите. Для начала разводки главное среди них это минимальный размер дорожки и переходного отверстия. Производители всегда указывают свои технологические возможности на сайте и почти все сейчас делают дорожки от 6 mil (0,150 мм). Конечно возможно и меньше, но чаще это будет дороже. Советую не мельчить и разводить покрупнее — вам же будет потом удобнее.

Допустим, вы худо-бедно развели печатную плату. Теперь необходимо проверить зазоры в автоматическом режиме по всей плате. Производители иногда прикладывают файлы для их контроля в разных программах. Вот, например, OSH Park подготовил свои нормы в файлах для скачивания. В принципе, по этим нормам можно заказывать и у других производителей, везде технологические возможности примерно одинаковые.


*Открываем в пункте DRC скаченный файл или настраиваем зазоры сами

Жмем Проверить и получаем кучу ошибок. По каждой ошибке можно посмотреть место, где она вызвана, и принять решение: либо исправлять, либо забить и ничего не делать. Заказ плат процедура простая: что нарисуешь, то и получишь, задача программы лишь подсказать тебе слабые места.

Выгрузка на сайт производителя

Все производители принимают платы в виде gerber файлов, но бывают приятные исключения. Например, тот же OSH Park позволяет загружать прямо *.brd файл из Орла или *.kicad_pcb из программы KiCAD с последующим просмотром получившегося результата.

CAM processor

Вернемся к gerber файлам. Для генерации этих файлов из Орла, необходим так называемый CAM процессор. Это файл, в котором настраивается какие слои в какой файл выводить.

Вы конечно можете настроить вывод сами по тем же требованиям с сайта производителя, а можете воспользоваться готовым, если найдете.


*Eagle выведет слои top, pads, vias в файл *.toplayer.ger

Но тут надо быть внимательным, т.к этот CAM процессор выведет файлы с названиями, которые будут понятны одному производителю, а другой в них запутается. Так что смотрим требования к именам gerber файлов на сайте производителя и называем их соответственно.


*требования с сайта одного из производителей

Предварительный просмотр gerber файлов

Прежде чем оплачивать заказ не будет лишним посмотреть, как сгенерировались ваши файлы.

Возможно, там съехал слой шелкографии или поехали шрифты (самая частая проблемы, всегда пишите векторными шрифтами).

Для этого есть разные бесплатные online сервисы или программы. Файлы загружаются в zip архиве. Иногда функция просмотра встроена прямо в форму заказа платы. Так, например, EaseEDA имеет свой просмоторщик.

Ну а как оплатить заказ, я уж думаю, сами разберетесь. Благодарю за внимание.

Ссылки:

1. Работа в Eagle Cad — цикл статей от DiHalt'a
2. Долой Sprint Layout, да здравствует Eagle Cad — а тут я когда-то писал про работу с Орлом
3. Проверенные производители печатных плат (всегда сравнивайте цены): OSH Park, EasyEDA, iTead, Seeed Studio
4. Онлайн просмоторщики gerber файлов: EasyEDA, Gerber-Viewer

как я заказал монтаж печатной платы на китайской фабрике / Хабр

Цель публикации: рассказать, как подготовить несложную радиолюбительскую конструкцию к производству.

Как уже я писал ранее, творчество радиолюбителей имеет ограниченный возможностями семьи бюджет и имеет ограничение по отнятому у семьи времени. Не каждый радиолюбитель может себе позволить иметь дома оборудование для изготовления печатных плат и их монтажа. В современном мире это решается технологиями CAD/CAM, причём CAM может применяться и для изготовления печатных плат, и для монтажа компонентов на этих платах.

В этой статье описано: как производится монтаж печатных плат на производстве; как подготовить в CAD Eagle 7.7.0 проект для сборки прототипа на CAM, расположенной в КНР.

В этой статье не рассматриваются: критерии выбора контрагента, экономические аспекты, вопросы логистики.

Подготовка к производству


Процесс автоматизированного монтажа печатной платы обычно состоит из следующих этапов:
  1. Изготовление печатной платы (PCB).
  2. Нанесение на печатную плату паяльной пасты.
  3. Установка на печатную плату (Pick&Place) компонентов SMD.
  4. Оплавление паяльной пасты в печи.
  5. (При необходимости) Монтаж на нижнюю сторону платы компонентов SMD.
  6. (При необходимости) Монтаж на печатную плату компонентов THT (Through-Hole).
  7. Отмывка собранного печатного узла. Сушка.
  8. Технический контроль качества монтажа компонентов.
  9. (При необходимости) Ремонт собранного печатного узла.
  10. (При необходимости) Нанесение покрытий.

Как изготовить печатную плату на китайской фабрике, я описал в предыдущей статье цикла. При подготовке проекта к производству необходимо помнить о том, что:
  1. Печатная плата должна быть прямоугольной формы. Печатная плата непрямоугольной формы должна иметь прямоугольное обрамление.
  2. Печатные платы желательно собирать в панели. Небольшие и непрямоугольные печатные платы собирать в панели обязательно!
  3. Размещение компонентов SMD только на одной стороне значительно упрощает и удешевляет процесс сборки.
  4. Печатная плата или панель должна иметь по краям достаточно свободного от компонентов пространства для крепления в установщике и печи.
  5. При нанесении на печатную плату паяльной пасты используется трафарет (stencil), который можно заказать вместе с изготовлением печатной платы.
  6. Для корректной работы установщика компонентов на печатную плату (и/или на технологические поля панели) должны быть нанесены реперные знаки.
  7. Номенклатура компонентов для загрузки установщика определяется согласно BOM (Bill Of Materials).
  8. Координаты и ориентацию компонентов при установке (Pick&Place) содержит специальный файл, на основании которого технологи создают задание установщику компонентов.

Как я готовил свою конструкцию к производству


Я решил попробовать разместить заказ на сборку несложного устройства из статьи "Конструкция выходного дня: простой MIDI-адаптер".

В качестве корпуса адаптера был выбран простой и дешёвый SZOMK AK-S-27a. В этот корпус можно установить небольшую печатную плату непрямоугольной формы.

Печатные платы для моих любительских проектов я обычно заказываю у pcbgogo.com. Заказ на монтаж я решил разместить у них же. Требования к оформлению заказа на монтаж печатных плат (PCBA) можно посмотреть здесь, образцы файлов BOM и Pick&Place можно посмотреть здесь.

Процесс сборки в PCBGOGO выглядит так:


Минимальные размеры платы — 50*100 мм. Минимальный заказ на сборку — 5 печатных плат (панелей), минимальная стоимость работ — $50 при количестве менее 20 печатных плат (панелей). Трафарет при условии заказа монтажа изготавливается бесплатно. Если собранная панель укладывается в льготные требования к платам прототипа, изготовление пяти или 10 таких панелей обойдётся в $5.

В качестве CAD в своих любительских проектах я использую бесплатную версию Eagle 7.7.0 с ограничением размеров платы 100*80 мм и количеством слоёв до двух. Сборку плат в панель я делал по инструкции Viktor's DIY Blog. В результате получилось:


Поскольку в панель собраны печатные платы непрямоугольной формы, они разделяются фрезерованием. Толщина фрезы в нашем случае 2 мм. Тонкое место перемычек — не менее 1,5 мм. Перемычки перфорированы сверлами диаметром 0,5 мм по три отверстия с каждой стороны. Отверстия за контуры платы не выходят, чтобы при удалении перемычек не образовывались «пеньки», и не надо было бы обрабатывать края платы перед установкой в корпус.

Если объединяемые в панель платы были бы прямоугольными, их можно было бы разделить скрайбированием (v-scoring). Подробней про скрайбирование можно прочитать здесь.

Размер панели получился 100*72 мм. Компоненты SMD я расположил только с одной стороны. Платы в панели я сориентировал так, чтобы обеспечить монтаж выводных разъёмов USB без разборки панели. Технологические поля слева и справа предназначены для крепления панели в процессе производства. Требование производителя к минимальным размерам платы, не менее 50*100 мм, было выполнено.

Реперные точки на панель я наносить не стал: было интересно, что скажут на это китайские технологи!

Внимание, спойлер

Китайские технологи на это не сказали ничего. Им, похоже, не впервой.


Исходные данные для Pick&Place файла были получены в результате экспорта данных из проекта панели в файл формата «Mount SMD». Оттуда же были взяты данные о позиционных обозначениях компонентов для BOM.

Необходимо обратить внимание на тот факт, что позиционные обозначения одинаковых компонентов в BOM и Pick&Place файлах должны полностью совпадать.

Также нужно отметить, что описания компонентов (тип компонента, производитель компонента, номинал, футпринт и т.п.) заносятся в Pick&Place файл для более полного понимания технологами, что это за компонент, и как его правильно установить на плату.

Проект подготовленной к производству панели MIDI-адаптера находится здесь.

Подготовка к производству со стороны производителя


После проверки файлов проекта технологи PCBGOGO попросили меня не выделываться выслать файлы для одной платы. Файлы проекта без панелизации находятся здесь. Одиночная плата выглядит так:
Комплектацию заказа я поручил производителю. Обычно при согласовании BOM предлагают замену компонентов на аналогичные других производителей или близких номиналов. В моём случае с BOM было всё просто: все комплектующие нашли на складе производителя.

Надо отметить, что заказчик может предоставить комплектующие для монтажа сам, но по условиям производителя комплектующие надо отправлять в этом случае с определённым запасом, а в нашем случае — ещё и через таможню. Неиспользованные обрезки вернут вместе с заказом.

Видимая заказчику часть процесса подготовки к производству со стороны производителя на этом завершилась. Теперь, когда процесс запущен, мне остаётся следить за выполнением заказа on-line и ждать, когда мне доставят собранные печатные узлы и трафарет.

Краткие итоги

В данной публикации разобран: процесс подготовки несложной радиолюбительской конструкции к производству.

Чтобы заказать изготовление печатной платы и сборку прототипа на китайской фабрике нужно:

  1. Ознакомиться с требованиями производителя.
  2. При необходимости собрать печатные платы в панель самостоятельно или предоставить это производителю.
  3. Выгрузить из проекта gerber файлы.
  4. Подготовить BOM (Bill Of Materials).
  5. Подготовить данные для установщика компонентов.
  6. Выслать файлы проекта производителю и согласовать с ним детали.
  7. Оплатить производителю производство, комплектацию и доставку.

Очень надеюсь, что изложенный в публикации опыт заказа монтажа печатных плат, поможет читателям в организации их технического творчества. И также надеюсь, что любая оценка статьи будет сопровождаться комментарием.

73! До связи!

Изготовление высококачественных печатных плат в «домашних» условиях

Таити!.. Таити!..
Не были мы ни на каком Таити!
Нас и тут неплохо кормят!
© Кот из мультика

Вступление с отступлением

Как в бытовых и лабораторных условиях делали платы раньше? Способов было несколько — например:

  1. рисовали будущие проводники рейсфедерами;
  2. гравировали и резали резаками;
  3. наклеивали скотч или изоленту, потом рисунок вырезали скальпелем;
  4. изготавливали простейшие трафареты с последующим нанесением рисунка с помощью аэрографа.

Недостающие элементы дорисовывали рейсфедерами и ретушировали скальпелем.

Это был длительный и трудоемкий процесс, требующий от «рисователя» недюжинных художественных способностей и аккуратности. Толщина линий с трудом укладывалась в 0,8 мм, точность повторения была никакая, каждую плату нужно было рисовать отдельно, что сильно сдерживало выпуск даже очень маленькой партии печатных плат (далее — ПП).

Что же мы имеем сегодня?

Прогресс не стоит на месте. Времена, когда радиолюбители рисовали ПП каменными топорами на шкурах мамонтов, канули в лету. Появление на рынке общедоступной химии для фотолитографии открывает перед нами совсем иные перспективы производства ПП без металлизации отверстий в домашних условиях.

Коротко рассмотрим химию, используемую сегодня для производства ПП.

Фоторезист

Можно использовать жидкий или пленочный. Пленочный в данной статье рассматривать не будем вследствие его дефицитности, сложностей прикатывания к ПП и более низкого качества получаемых на выходе печатных плат.

После анализа предложений рынка я остановился на POSITIV 20 в качестве оптимального фоторезиста для домашнего производства ПП.

Назначение:
POSITIV 20 — фоточувствительный лак. Используется при мелкосерийном изготовлении печатных плат, гравюр на меди, при проведении работ, связанных с переносом изображений на различные материалы.
Свойства:
Высокие экспозиционные характеристики обеспечивают хорошую контрастность переносимых изображений.
Применение:
Применяется в областях, связанных с переносом изображений на стекло, пластики, металлы и пр. при мелкосерийном производстве. Способ применения указан на баллоне.
Характеристики:
Цвет: синий
Плотность: при 20°C 0,87 г/см3
Время высыхания: при 70°C 15 мин.
Расход: 15 л/м2
Максимальная фоточувствительность: 310-440 нм

Подробнее о POSITIV 20 можно почитать здесь.

В инструкции к фоторезисту написано, что хранить его можно при комнатной температуре и он не подвержен старению. Категорически не согласен! Хранить его нужно в прохладном месте, например, на нижней полке холодильника, где обычно поддерживается температура +2…+6°C. Но ни в коем случае не допускайте отрицательных температур!

Если использовать фоторезисты, продаваемые «на розлив» и не имеющие светонепроницаемой упаковки, требуется позаботиться о защите от света. Хранить нужно в полной темноте и температуре +2…+6°C.

Просветитель

Аналогично, наиболее подходящим просветителем я считаю постоянно используемый мной TRANSPARENT 21.

Назначение:
Позволяет непосредственно переносить изображения на поверхности, покрытые светочувствительной эмульсией POSITIV 20 или другим фоторезистом.
Свойства:
Придает прозрачность бумаге. Обеспечивает пропускание ультрафиолетовых лучей.
Применение:
Для быстрого переноса контуров рисунков и схем на подложку. Позволяет значительно упростить процесс репродуцирования и сократить временные затраты.
Характеристики:
Цвет: прозрачный
Плотность: при 20°C 0,79 г/см3
Время высыхания: при 20°C 30 мин.
Примечание:
Вместо обычной бумаги с просветителем можно использовать прозрачную пленку для струйных или лазерных принтеров — в зависимости от того, на чем будем печатать фотошаблон.

Проявитель фоторезиста

Существует много различных растворов для проявления фоторезиста.

Советуют проявлять с помощью раствора «жидкое стекло». Его химический состав: Na2SiO3*5H2O. Это вещество обладает огромным числом достоинств. Наиболее важным является то, что в нем очень трудно передержать ПП — вы можете оставить ПП на не фиксированное точно время. Раствор почти не изменяет своих свойств при перепадах температуры (нет риска распада при увеличении температуры), также имеет очень большой срок хранения — его концентрация остается постоянной не менее пары лет. Отсутствие проблемы передержки в растворе позволит увеличить его концентрацию для уменьшения времени проявления ПП. Рекомендуют смешивать 1 часть концентрата с 180 частями воды (чуть более 1,7 г силиката в 200 мл воды), но возможно сделать более концентрированную смесь, чтобы изображение проявлялось примерно за 5 секунд без риска разрушения поверхности при передержке. При невозможности приобретения силиката натрия используйте углекислый натрий (Na2СO3) или углекислый калий (K2СO3).

Также рекомендуют бытовое средство для прочистки сантехники — «Крот».

Не пробовал ни первое, ни второе, поэтому расскажу, чем проявляю без каких-либо проблем уже несколько лет. Я использую водный раствор каустической соды. На 1 литр холодной воды — 7 граммов каустической соды. Если нет NaOH, применяю раствор KOH, вдвое увеличив концентрацию щелочи в растворе. Время проявления — 30-60 секунд при правильной экспозиции. Если по истечении 2 минут рисунок не проявляется (или проявляется слабо), и начинает смываться фоторезист с заготовки — значит, неправильно выбрано время экспозиции: нужно увеличивать. Если, наоборот, быстро проявляется, но смываются и засвеченные участки, и незасвеченные — либо слишком велика концентрация раствора, либо низкое качество фотошаблона (ультрафиолет свободно проходит сквозь «черное»): нужно увеличивать плотность печати шаблона.

Растворы травления меди

Лишнюю медь с печатных плат стравливают с помощью разных травителей. Среди людей, занимающихся этим дома, зачастую распространены персульфат аммония, перекись водорода + соляная кислота, раствор медного купороса + поваренная соль.

Я всегда травлю хлорным железом в стеклянной посуде. При работе с раствором нужно быть осторожным и внимательным: при попадании на одежду и предметы остаются ржавые пятна, которые с трудом удаляются слабым раствором лимонной (сок лимона) или щавелевой кислоты.

Концентрированный раствор хлорного железа подогреваем до 50-60°C, в него погружаем заготовку, стеклянной палочкой с ватным тампоном на конце аккуратно и без усилия водим по участкам, где хуже стравливается медь, — этим достигается более ровное травление по всей площади ПП. Если не выравнивать принудительно скорость, увеличивается требуемая продолжительность травления, а это со временем приводит к тому, что на участках, где медь уже стравилась, начинается подтравливание дорожек. В итоге имеем совсем не то, что хотели получить. Очень желательно обеспечить непрерывное перемешивание травильного раствора.

Химия для смывки фоторезиста

Чем проще всего смыть уже ненужный фоторезист после травления? После многократных проб и ошибок я остановился на обыкновенном ацетоне. Когда его нет — смываю любым растворителем для нитрокрасок.

Итак, делаем печатную плату

С чего начинается высококачественная печатная плата? Правильно:

Создание высококачественного фотошаблона

Для его изготовления можно воспользоваться практически любым современным лазерным или струйным принтером. Учитывая, что мы используем в рамках данной статьи позитивный фоторезист, — там, где на ПП должна остаться медь, принтер должен рисовать черным. Где не должно быть меди — принтер ничего не должен рисовать. Очень важный момент при печати фотошаблона: требуется установить максимальный полив красителя (в настройках драйвера принтера). Чем более черными будут закрашенные участки, тем больше шансов получить великолепный результат. Цвет не нужен, достаточно черного картриджа. Из той программы (рассматривать программы не будем: каждый волен выбирать сам — от PCAD до Paintbrush), в которой рисовался фотошаблон, печатаем на обычном листе бумаги. Чем выше разрешение при печати и чем качественнее бумага, тем выше будет качество фотошаблона. Рекомендую не ниже 600 dpi, бумага не должна быть сильно плотной. При печати учитываем, что той стороной листа, на которую наносится краска, шаблон будет класться на заготовку ПП. Если сделать иначе, края у проводников ПП будут размытыми, нечеткими. Даем просохнуть краске, если это был струйный принтер. Далее пропитываем бумагу TRANSPARENT 21, даем просохнуть и… фотошаблон готов.

Вместо бумаги и просветителя можно и даже очень желательно использовать прозрачную пленку для лазерных (при печати на лазерном принтере) или струйных (для струйной печати) принтеров. Учтите, что у этих пленок стороны неравнозначны: только одна рабочая. Если будете использовать лазерную печать, крайне рекомендую сделать «сухой» прогон листа пленки перед печатью — просто прогоните лист через принтер, имитируя печать, но ничего не печатая. Зачем это нужно? При печати фьюзер (печка) прогреет лист, что неизбежно приведет к его деформации. Как следствие — ошибка в геометрии ПП на выходе. При изготовлении двусторонних ПП это чревато несовпадением слоев со всеми вытекающими… А с помощью «сухого» прогона мы прогреем лист, он деформируется и будет готов к печати шаблона. При печати лист во второй раз пройдет сквозь печку, но деформация при этом будет куда менее значительной — проверено неоднократно.

Если ПП несложная, можно нарисовать ее вручную в очень удобной программе с русифицированным интерфейсом — Sprint Layout 3.0R (~650 КБ).

На подготовительном этапе рисовать не слишком громоздкие электрические схемы очень удобно в также русифицированной программе sPlan 4.0 (~450 КБ).

Так выглядят готовые фотошаблоны, распечатанные на принтере Epson Stylus Color 740:

         

Печатаем только черным, с максимальным поливом красителя. Материал — прозрачная пленка для струйных принтеров.

Подготовка поверхности ПП к нанесению фоторезиста

Для производства ПП используются листовые материалы с нанесенной медной фольгой. Самые распространенные варианты — с толщиной меди 18 и 35 мкм. Чаще всего для производства ПП в домашних условиях используются листовые текстолит (прессованная с клеем ткань в несколько слоев), стеклотекстолит (то же самое, но в качестве клея используются эпоксидные компаунды) и гетинакс (прессованная бумага с клеем). Реже — ситтал и поликор (высокочастотная керамика — в домашних условиях применяется крайне редко), фторопласт (органический пластик). Последний также применяется для изготовления высокочастотных устройств и, имея очень хорошие электротехнические характеристики, может использоваться везде и всюду, но его применение ограничивает высокая цена.

Прежде всего, необходимо убедиться в том, что заготовка не имеет глубоких царапин, задиров и тронутых коррозией участков. Далее желательно до зеркала отполировать медь. Полируем не особо усердствуя, иначе сотрем и без того тонкий слой меди (35 мкм) или, во всяком случае, добьемся разной толщины меди на поверхности заготовки. А это, в свою очередь, приведет к разной скорости вытравливания: быстрее стравится там, где тоньше. Да и более тонкий проводник на плате — не всегда хорошо. Особенно, если он длинный и по нему будет течь приличный ток. Если медь на заготовке качественная, без грехов, то достаточно обезжирить поверхность.

Нанесение фоторезиста на поверхность заготовки

Располагаем плату на горизонтальной или слегка наклоненной поверхности и наносим состав из аэрозольной упаковки с расстояния примерно 20 см. Помним, что важнейший враг при этом — пыль. Каждая частица пыли на поверхности заготовки — источник проблем. Чтобы создать однородное покрытие, распыляем аэрозоль непрерывными зигзагообразными движениями, начиная из верхнего левого угла. Не применяйте аэрозоль в избыточных количествах, так как это вызывает нежелательные подтеки и приводит к образованию неоднородного по толщине покрытия, требующего более длительного времени экспозиции. Летом при высокой температуре окружающей среды может потребоваться повторная обработка, либо необходимо распылять аэрозоль с меньшего расстояния — для уменьшения потерь от испарения. При распылении не наклоняйте баллон сильно — это приводит к повышенному расходу газа-пропеллента и как следствие — аэрозольный баллон прекращает работу, хотя в нем остается еще фоторезист. Если вы получаете неудовлетворительные результаты при аэрозольном нанесении фоторезиста, используйте центрифужное покрытие. В этом случае фоторезист наносится на плату, закрепленную на вращающемся столе с приводом 300-1000 оборотов в минуту. После окончания нанесения покрытия плата не должна подвергаться воздействию сильного света. По цвету покрытия можно приблизительно определить толщину нанесенного слоя:

  • светло-серый синий — 1-3 микрона;
  • темно-серый синий — 3-6 микрон;
  • синий — 6-8 микрон;
  • темно-синий — более 8 микрон.

На меди цвет покрытия может иметь зеленоватый оттенок.

Чем тоньше покрытие на заготовке, тем лучше результат.

Я всегда наношу фоторезист на центрифуге. В моей центрифуге скорость вращения 500-600 об/мин. Крепление должно быть простым, зажим производится только по торцам заготовки. Закрепляем заготовку, запускаем центрифугу, брызгаем на центр заготовки и наблюдаем, как фоторезист тончайшим слоем растекается по поверхности. Центробежными силами излишки фоторезиста будут сброшены с будущей ПП, поэтому очень рекомендую предусмотреть защитную стенку, чтобы не превратить рабочее место в свинарник. Я использую обыкновенную кастрюлю, в днище которой по центру сделано отверстие. Через это отверстие проходит ось электродвигателя, на которой установлена площадка крепления в виде креста из двух алюминиевых реек, по которым «бегают» уши зажима заготовок. Уши сделаны из алюминиевых уголков, зажимаемых на рейке гайкой типа «барашек». Почему алюминий? Маленькая удельная масса и, как следствие, меньше биения при отклонении центра массы вращения от центра вращения оси центрифуги. Чем точнее отцентрировать заготовку, тем меньше будут биения за счет эксцентриситета массы и тем меньше усилий потребуется для жесткого крепления центрифуги к основанию.

Фоторезист нанесен. Даем ему просохнуть в течение 15-20 минут, переворачиваем заготовку, наносим слой на вторую сторону. Даем еще 15-20 минут на сушку. Не забываем о том, что попадание прямого солнечного света и пальцев на рабочие стороны заготовки недопустимы.

Дубление фоторезиста на поверхности заготовки

Помещаем заготовку в духовку, плавно доводим температуру до 60-70°C. При этой температуре выдерживаем 20-40 минут. Важно, чтобы поверхностей заготовки ничто не касалось — допустимы только касания торцов.

Выравнивание верхнего и нижнего фотошаблонов на поверхностях заготовки

На каждом из фотошаблонов (верхний и нижний) должны быть метки, по которым на заготовке нужно сделать 2 отверстия — для совмещения слоев. Чем дальше друг от друга метки, тем выше точность совмещения. Обычно я их ставлю по диагонали шаблонов. По этим меткам на заготовке с помощью сверлильного станка строго под 90° сверлим два отверстия (чем тоньше отверстия, тем точнее совмещение — я использую сверло 0,3 мм) и совмещаем по ним шаблоны, не забывая о том, что шаблон должен прикладываться к фоторезисту той стороной, на которую была произведена печать. Прижимаем шаблоны к заготовке тонкими стеклами. Стекла предпочтительнее всего использовать кварцевые — они лучше пропускают ультрафиолет. Еще лучшие результаты дает оргстекло (плексиглас), но оно имеет неприятное свойство царапаться, что неизбежно скажется на качестве ПП. При небольших размерах ПП можно использовать прозрачную крышку от упаковки компакт-диска. За неимением таких стекол можно использовать и обычное оконное, увеличив время экспозиции. Важно, чтобы стекло было ровным, обеспечивая ровное прилегание фотошаблонов к заготовке, иначе невозможно будет получить качественные края дорожек на готовой ПП.


Заготовка с фотошаблоном под оргстеклом. Используем коробку из-под компакт-диска.
Экспозиция (засветка)

Время, требуемое для экспонирования, зависит от толщины слоя фоторезиста и интенсивности источника света. Лак-фоторезист POSITIV 20 чувствителен к ультрафиолетовым лучам, максимум чувствительности приходится на участок с длиной волны 360-410 нм.

Лучше всего экспонировать под лампами, диапазон излучения которых находится в ультрафиолетовой области спектра, но если такой лампы у вас нет — можно использовать и обычные мощные лампы накаливания, увеличив время экспозиции. Не начинайте засветку до момента стабилизации освещения от источника — необходимо, чтобы лампа прогрелась в течение 2-3 минут. Время экспозиции зависит от толщины покрытия и обычно составляет 60-120 секунд при расположении источника света на расстоянии 25-30 см. Используемые пластины стекла могут поглощать до 65% ультрафиолета, поэтому в таких случаях необходимо увеличивать время экспозиции. Лучшие результаты достигаются при использовании прозрачных плексигласовых пластин. При применении фоторезиста с длительным сроком хранения время экспонирования может потребоваться увеличить вдвое — помните: фоторезисты подвержены старению!

Примеры использования различных источников света:

Источник светаВремяРасстояниеПримечание
ртутная лампа Philips HPR1253 мин.30 смпокрытие из кварцевого стекла толщиной 5 мм
ртутная лампа 1000W1,5 мин.50 смпокрытие из кварцевого стекла толщиной 5 мм
ртутная лампа 500W2,5 мин.50 смпокрытие из кварцевого стекла толщиной 5 мм
кварцевая лампа 300W3-4 мин.30 смпокрытие из кварцевого стекла толщиной 5 мм
солнечный свет5-10 мин.лето, в полдень, безоблачнопокрытие из кварцевого стекла толщиной 5 мм
лампы Osram-Vitalux 300W4-8 мин.40 смпокрытие из кварцевого стекла толщиной 8 мм


Лампы УФ-излучения

Каждую сторону экспонируем по очереди, после экспозиции даем выстояться заготовке 20-30 минут в затемненном месте.

Проявление экспонированной заготовки

Проявляем в растворе NaOH (каустическая сода) — подробнее смотрите в начале статьи — при температуре раствора 20-25°C. Если до 2 минут проявления нет — мало время экспозиции. Если проявляется хорошо, но смываются и полезные участки — вы перемудрили с раствором (слишком велика концентрация) или слишком велико время экспозиции при данном источнике излучения или фотошаблон низкого качества — недостаточно насыщенный печатаемый черный цвет позволяет ультрафиолету засвечивать заготовку.

При проявлении я всегда очень бережно, без усилий «катаю» ватным тампоном на стеклянной палочке по тем местам, где должен смыться засвеченный фоторезист, — это ускоряет процесс.

Промывка заготовки от щелочи и остатков отслоившегося засвеченного фоторезиста

Я делаю это под водопроводным краном — обычной водопроводной водой.

Повторное дубление фоторезиста

Помещаем заготовку в духовку, плавно поднимаем температуру и при температуре 60-100°C выдерживаем 60-120 минут — рисунок становится прочным и твердым.

Проверка качества проявления

Кратковременно (на 5-15 секунд) погружаем заготовку в подогретый до температуры 50-60°C раствор хлорного железа. Быстро промываем проточной водой. В местах, где фоторезиста нет, начинается интенсивное травление меди. Если где-то случайно остался фоторезист, аккуратно механически удаляем его. Удобно это делать обычным или офтальмологическим скальпелем, вооружившись оптикой (очки для пайки, лупа часовщика, лупа на штативе, микроскоп).

Травление

Травим в концентрированном растворе хлорного железа с температурой 50-60°C. Желательно обеспечить непрерывную циркуляцию травильного раствора. Плохо стравливающиеся места аккуратно «массируем» ватным тампоном на стеклянной палочке. Если хлорное железо свежеприготовленное, время травления обычно не превышает 5-6 минут. Промываем заготовку проточной водой.

         
Плата вытравлена

Как готовить концентрированный раствор хлорного железа? Растворяем в слегка (до 40°C) подогретой воде FeCl3 до тех пор, пока не перестанет растворяться. Фильтруем раствор. Хранить нужно в затемненном прохладном месте в герметичной неметаллической упаковке — в стеклянных бутылках, например.

Удаление уже ненужного фоторезиста

Смываем фоторезист с дорожек ацетоном или растворителем для нитрокрасок и нитроэмалей.

Сверление отверстий

Диаметр точки будущего отверстия на фотошаблоне желательно подбирать таким, чтобы впоследствии было удобно сверлить. Например, при требуемом диаметре отверстия 0,6-0,8 мм диаметр точки на фотошаблоне должен быть около 0,4-0,5 мм — в таком случае сверло будет хорошо центроваться.

Желательно использовать сверла, покрытые карбидом вольфрама: сверла из быстрорежущих сталей очень быстро изнашиваются, хотя сталь можно применять для сверления одиночных отверстий большого диаметра (больше 2 мм), так как сверла с напылением карбида вольфрама такого диаметра слишком дорогие. При сверлении отверстий диаметром менее 1 мм лучше использовать вертикальный станок, иначе ваши сверла будут быстро ломаться. Если сверлить ручной дрелью — неизбежны перекосы, ведущие к неточной стыковке отверстий между слоями. Движение сверху вниз на вертикальном сверлильном станке самое оптимальное с точки зрения нагрузки на инструмент. Карбидные сверла изготавливают с жестким (т.е. сверло точно соответствует диаметру отверстия) или с толстым (иногда называют «турбо-») хвостовиком, имеющим стандартный размер (обычно, 3,5 мм). При сверлении сверлами с карбидным напылением важно жестко закрепить ПП, так как такое сверло при движении вверх может приподнять ПП, перекосить перпендикулярность и вырвать фрагмент платы.

Сверла маленьких диаметров обычно вставляются либо в цанговый патрон (различных размеров), либо в трехкулачковый патрон. Для точной фиксации закрепление в трехкулачковом патроне — не самый лучший вариант, и маленький размер сверла (меньше 1 мм) быстро делает желобки в зажимах, теряя хорошую фиксацию. Поэтому для сверл диаметром меньше 1 мм лучше использовать цанговый патрон. На всякий случай приобретите дополнительный набор, содержащий запасные цанги для каждого размера. Некоторые недорогие сверла производят с пластиковыми цангами — выбросите их и купите металлические.

Для получения приемлемой точности необходимо правильно организовать рабочее место, то есть, во-первых, обеспечить хорошее освещение платы при сверлении. Для этого можно использовать галогенную лампу, прикрепив ее на штативе для возможности выбирать позицию (освещать правую сторону). Во-вторых, поднять рабочую поверхность примерно на 15 см выше столешницы для лучшего визуального контроля над процессом. Неплохо было бы удалять пыль и стружку в процессе сверления (можно использовать обычный пылесос), но это не обязательно. Надо отметить, что пыль от стекловолокон, образующаяся при сверлении, очень колкая и при попадании на кожу вызывает ее раздражение. И, наконец, при работе очень удобно пользоваться ножным включателем сверлильного станка.

Типичные размеры отверстий:

  • переходные отверстия — 0,8 мм и менее;
  • интегральные схемы, резисторы и т.д. — 0,7-0,8 мм;
  • большие диоды (1N4001) — 1,0 мм;
  • контактные колодки, триммеры — до 1,5 мм.

Старайтесь избегать отверстий диаметром менее 0,7 мм. Всегда держите не менее двух запасных сверл 0,8 мм и менее, так как они всегда ломаются именно в тот момент, когда вам срочно надо сделать заказ. Сверла 1 мм и больше намного надежнее, хотя и для них неплохо бы иметь запасные. Когда вам надо изготовить две одинаковые платы, то для экономии времени их можно сверлить одновременно. При этом необходимо очень аккуратно сверлить отверстия в центре контактной площадки около каждого угла ПП, а для больших плат — отверстия, расположенные близко от центра. Положите платы друг на друга и, используя центрующие отверстия 0,3 мм в двух противоположных углах и штифты в качестве колышков, закрепите платы относительно друг друга.

При необходимости можно зенковать отверстия сверлами большего диаметра.

Лужение меди на ПП

Если нужно облудить дорожки на ПП, можно воспользоваться паяльником, мягким низкоплавким припоем, спиртоканифольным флюсом и оплеткой коаксиального кабеля. При больших объемах лудят в ванных, наполненных низкотемпературными припоями с добавлением флюсов.

Наиболее популярным и простым расплавом для лужения является легкоплавкий сплав «Розе» (олово — 25%, свинец — 25%, висмут — 50%), температура плавления которого 93-96°C. Плату при помощи щипцов помещают под уровень жидкого расплава на 5-10 секунд и, вынув, проверяют, вся ли медная поверхность покрыта равномерно. При необходимости операцию повторяют. Сразу же после вынимания платы из расплава его остатки удаляют либо с помощью резинового ракеля, либо резким встряхиванием в направлении, перпендикулярном плоскости платы, удерживая ту в зажиме. Другим способом удаления остатков сплава «Розе» является нагрев платы в термошкафу и встряхивание. Операция может проводиться повторно для достижения монотолщинного покрытия. Чтобы предотвратить окисление горячего расплава, в емкость для лужения добавляют глицерин, так чтобы его уровень покрывал расплав на 10 мм. После окончания процесса плата отмывается от глицерина в проточной воде. Внимание! Данные операции предполагают работу с установками и материалами, находящимися под действием высокой температуры, поэтому для предотвращения ожога необходимо пользоваться защитными перчатками, очками и фартуками.

Операция лужения сплавом олово-свинец протекает аналогично, но более высокая температура расплава ограничивает область применения данного способа в условиях кустарного производства.

Хочу поделиться еще одним способом лужения при помощи сплава «Розе», также проверенным на практике. Обыкновенная водопроводная вода наливается в консервную банку или небольшую мисочку, добавляется немного лимонной кислоты или уксуса, ставится на плиту. В кипящую воду помещается плата, высыпается несколько застывших капель сплава «Розе», которые тут же плавятся в кипящей воде, и ваткой, намотанной на длинный пинцет или палочку (чтобы не обжечься паром), аккуратно размазываются по дорожкам. По завершении процесса вода сливается, а застывшие остатки сплава складываются в какую-либо емкость до следующего использования.

Не забудьте после лужения очистить плату от флюса и тщательно обезжирить.

Если у вас большое производство — можно использовать химическое лужение.

Нанесение защитной маски

Операции с нанесением защитной маски в точности повторяют все, что было написано выше: наносим фоторезист, сушим, дубим, центруем фотошаблоны масок, экспонируем, проявляем, промываем и еще раз дубим. Само собой, пропускаем шаги с проверкой качества проявления, травлением, удалением фоторезиста, лужением и сверлением. В самом конце дубим маску в течение 2 часов при температуре около 90-100°C — она станет прочной и твердой, как стекло. Образованная маска защищает поверхность ПП от внешнего воздействия и предохраняет от теоретически возможных замыканий при эксплуатации. Также она играет не последнюю роль при автоматической пайке — не дает «сесть» припою на соседние участки, замыкая их.

Все, двусторонняя печатная плата с маской готова

Мне приходилось таким образом делать ПП с шириной дорожек и шагом между ними до 0,05 мм (!). Но это уже ювелирная работа. А без особых усилий можно делать ПП с шириной дорожки и шагом между ними 0,15-0,2 мм.

На плату, показанную на фотографиях, я маску не наносил — не было такой необходимости.

       
Печатная плата в процессе монтажа на нее компонентов

А вот и само устройство, для которого делалась ПП:

Это сотовый телефонный мост, позволяющий в 2-10 раз снизить стоимость услуг мобильной связи — ради этого стоило возиться с ПП ;). ПП с распаянными компонентами находится в подставке. Раньше там было обыкновенное зарядное устройство для аккумуляторов мобильного телефона.

Дополнительная информация

Металлизация отверстий

В домашних условиях можно выполнить даже металлизацию отверстий. Для этого внутренняя поверхность отверстий обрабатывается 20-30-процентным раствором азотнокислого серебра (ляпис). Затем поверхность очищается ракелем и плата сушится на свету (можно использовать УФ-лампу). Суть этой операции в том, что под действием света азотнокислое серебро разлагается, и на плате остаются вкрапления серебра. Далее производится химическое осаждение меди из раствора: сернокислая медь (медный купорос) — 2 г, едкий натр — 4 г, нашатырный спирт 25-процентный — 1 мл, глицерин — 3,5 мл, формалин 10-процентный — 8-15 мл, вода — 100 мл. Срок хранения приготовленного раствора очень мал — готовить нужно непосредственно перед применением. После осаждения меди плату промывают и сушат. Слой получается очень тонким, его толщину необходимо увеличить до 50 мкм гальваническим способом.

Раствор для нанесения медного покрытия гальваническим способом:
На 1 литр воды 250 г сульфата меди (медный купорос) и 50-80 г концентрированной серной кислоты. Анодом служит медная пластинка, подвешенная параллельно покрываемой детали. Напряжение должно быть 3-4 В, плотность тока — 0,02-0,3 A/см2, температура — 18-30°C. Чем меньше ток, тем медленнее идет процесс металлизации, но тем качественнее получаемое покрытие.


Фрагмент печатной платы, где видна металлизация в отверстии
Самодельные фоторезисты

Фоторезист на основе желатина и бихромата калия:
Первый раствор: 15 г желатина залить 60 мл кипяченой воды и оставить для набухания на 2-3 часа. После набухания желатина поставить емкость на водяную баню при температуре 30-40°C до полного растворения желатина.
Второй раствор: в 40 мл кипяченой воды растворить 5 г двухромовокислого калия (хромпик, порошок ярко-оранжевого цвета). Растворять при слабом рассеянном освещении.
В первый раствор при интенсивном перемешивании влить второй. В полученную смесь пипеткой добавить несколько капель нашатырного спирта до получения соломенного цвета. Фотоэмульсия наносится на подготовленную плату при очень слабом освещении. Плата сушится до «отлипа» при комнатной температуре в полной темноте. После экспонирования плату при слабом рассеянном освещении промыть в теплой проточной воде до удаления незадубленного желатина. Чтобы лучше оценить результат, можно окрасить участки с неудаленным желатином раствором марганцовки.

Усовершенствованный самодельный фоторезист:
Первый раствор: 17 г столярного клея, 3 мл водного раствора аммиака, 100 мл воды оставить для набухания на сутки, затем греть на водяной бане при 80°C до полного растворения.
Второй раствор: 2,5 г бихромата калия, 2,5 г бихромата аммония, 3 мл водного раствора аммиака, 30 мл воды, 6 мл спирта.
Когда первый раствор остынет до 50°C, при энергичном перемешивании влейте в него второй раствор и полученную смесь профильтруйте (эту и последующие операции необходимо проводить в затемненном помещении, солнечный свет недопустим!). Эмульсия наносится при температуре 30-40°C. Дальше — как в первом рецепте.

Фоторезист на основе бихромата аммония и поливинилового спирта:
Готовим раствор: поливиниловый спирт — 70-120 г/л, бихромат аммония — 8-10 г/л, этиловый спирт — 100-120 г/л. Избегать яркого света! Наносится в 2 слоя: первый слой — сушка 20-30 минут при 30-45°C — второй слой — сушка 60 минут при 35-45°C. Проявитель — 40-процентный раствор этилового спирта.

Химическое лужение

Прежде всего, плату необходимо декапировать, чтобы удалить образовавшийся окисел меди: 2-3 секунды в 5-процентном растворе соляной кислоты с последующей промывкой в проточной воде.

Достаточно просто осуществлять химическое лужение погружением платы в водный раствор, содержащий хлорное олово. Выделение олова на поверхности медного покрытия происходит при погружении в такой раствор соли олова, в котором потенциал меди более электроотрицателен, чем материал покрытия. Изменению потенциала в нужном направлении способствует введение в раствор соли олова комплексообразующей добавки — тиокарбамида (тиомочевины). Такого типа растворы имеют следующий состав (г/л):

1234
Двухлористое олово SnCl2*2H2O5,55-82010
Тиокарбамид CS(NH2)25035-50--
Серная кислота H2SO4-30-40--
Винная кислота C4H6O635---
Каустическая сода NaOH-6--
Молочнокислый натрий--200-
Сернокислый алюминий-аммоний (алюмоаммонийные квасцы)---300
Температура, °C60-7050-6018-2518-25

Среди перечисленных наиболее распространены растворы 1 и 2. Иногда в качестве поверхностно-активного вещества для 1-го раствора предлагается использование моющего средства «Прогресс» в количестве 1 мл/л. Добавление во 2-й раствор 2-3 г/л нитрата висмута приводит к осаждению сплава, содержащего до 1,5% висмута, что улучшает паяемость покрытия (препятствует старению) и многократно увеличивает срок хранения до пайки компонентов у готовой ПП.

Для консервации поверхности применяют аэрозольные распылители на основе флюсующих композиций. Нанесенный на поверхность заготовки лак после высыхания образует прочную гладкую пленку, которая препятствует окислению. Одним из популярных веществ является «SOLDERLAC» фирмы Cramolin. Последующая пайка проводится прямо по обработанной поверхности без дополнительного удаления лака. В особо ответственных случаях пайки лак можно удалить спиртовым раствором.

Искусственные растворы для лужения ухудшаются с течением времени, особенно при контакте с воздухом. Поэтому если у вас большие заказы бывают нечасто, то старайтесь приготовить сразу небольшое количество раствора, достаточное для лужения нужного количества ПП, а остатки раствора храните в закрытой емкости (идеально подходят бутылки типа используемых в фотографии, не пропускающие воздух). Также необходимо защищать раствор от загрязнения, которое может сильно ухудшить качество вещества.

В заключение хочу сказать, что все же лучше использовать готовые фоторезисты и не заморачиваться с металлизацией отверстий в домашних условиях — великолепных результатов все равно не получите.


90000 Printed circuit board 90001 Part of a 1983 Sinclair ZX Spectrum computer board; a populated PCB, showing the conductive traces, vias (the through-hole paths to the other surface), and some mounted electrical components 90002 A 90003 printed circuit board 90004, or 90003 PCB 90004, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or signal traces etched from copper sheets laminated onto a non-conductive 90007 substrate 90008.It is also referred to as 90003 printed wiring board 90004 (90003 PWB 90004) or 90003 etched wiring board 90004. A PCB populated with electronic components is a 90003 printed circuit assembly 90004 (90003 PCA 90004), also known as a 90003 printed circuit board assembly 90004 (90003 PCBA 90004). Printed circuit boards are used in virtually all but the simplest commercially produced electronic devices. 90023 90002 PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire wrap or point-to-point construction, but are much cheaper and faster for high-volume production; the production and soldering of PCBs can be done by totally automated equipment.Much of the electronics industry's PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization. 90023 90026 History 90027 90002 Development of the methods used in modern printed circuit boards started early in the 20th century. In 1903 році, a German inventor, Albert Hanson, described flat foil conductors laminated to an insulating board, in multiple layers. Thomas Edison experimented with chemical methods of plating conductors onto linen paper in 1904.Arthur Berry in 1 913 patented a print-and-etch method in Britain, and in the United States Max Schoop obtained a patent 90029 [1] 90030 to flame-spray metal onto a board through a patterned mask. Charles Durcase in 1927 patented a method of electroplating circuit patterns. 90029 [2] 90030 90023 90002 The inventor of the printed circuit was the Austrian engineer Paul Eisler who, while working in England, made one circa 1936 as part of a radio set. Around тисяча дев'ятсот сорок три the USA began to use the technology on a large scale to make proximity fuses for use in World War II 90029 [2] 90030.After the war, in 1948 the USA released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the 90007 Auto-Sembly 90008 process was developed by the United States Army. 90023 90002 Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove's 1936-1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board.The ECME could produce 3 radios per minute. 90023 90002 During World War II, the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted a proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.90029 [3] 90030 90023 90002 Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components 'leads were then passed through the holes and soldered to the PCB trace. This method of assembly is called 90007 through-hole 90008 construction. In 1949 Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered.With the development of board lamination and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are wasteful since drilling holes is expensive and the protruding wires are merely cut off. 90023 90002 In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packaging and greater functionality has grown.90023 90026 Manufacturing 90027 90054 Materials 90055 A PCB as a design on a computer (left) and realized as a board assembly populated with components (right). The board is double sided, with through-hole plating, green solder resist, and white silkscreen printing. Both surface mount and through-hole components have been used. A PCB in a computer mouse. The Component Side (left) and the printed side (right). The Component Side of a PCB in a computer mouse; some examples for common components and their reference designations on the silk screen.90002 Conducting layers are typically made of thin copper foil. Insulating layers dielectric are typically laminated together with epoxy resin prepreg. The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue, black, white and red. There are quite a few different dielectrics that can be chosen to provide different insulating values ​​depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3.Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR -6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM -4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with ball grid array (BGA) and naked die technologies, and glass fiber offers the best dimensional stability.90023 90002 FR-4 is by far the most common material used today. The board with copper on it is called "copper-clad laminate". 90023 90002 Copper foil thickness can be specified in ounces per square foot or micrometres. One ounce per square foot is 1.344 mils or 34 micrometres. 90023 90054 Patterning (etching) 90055 90002 The vast majority of printed circuit boards are made by bonding a layer of copper over the entire substrate, sometimes on both sides, (creating a "blank PCB") then removing unwanted copper after applying a temporary mask (e.g. by etching), leaving only the desired copper traces. A few PCBs are made by 90007 adding 90008 traces to the bare substrate (or a substrate with a very thin layer of copper) usually by a complex process of multiple electroplating steps. The PCB manufacturing method primarily depends on whether it is for production volume or sample / prototype quantities. Double-sided boards or multi-layer boards use plated-through holes to connect traces on either side of the substrate. 90023 90068 Large volume 90069 90070 90071 Silk screen printing-the main commercial method.90072 90071 Photographic methods-used when fine linewidths are required. 90072 90075 90068 Small volume 90069 90070 90071 Print onto transparent film and use as photomask along with photo-sensitized boards. (I.e. pre-sensitized boards), then etch. (Alternatively, use a film photoplotter). 90072 90071 Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted.Etch. (Note: laser copper ablation is rarely used and is considered experimental.) 90072 90071 Use a CNC-mill with a spade-shaped (i.e. 45-degree) cutter or miniature end-mill to route away the undesired copper, leaving only the traces. 90072 90075 90068 Hobbyist 90069 90070 90071 Laser-printed resist: Laser-print onto transparency film, heat-transfer with an iron or modified laminator onto bare laminate, touch up with a marker, then etch. 90072 90071 Other labor-intensive techniques exist, only suitable for one-off boards (vinyl film and resist, non-washable marker, and others).90072 90075 90002 There are three common "subtractive" methods (methods that remove copper) used for the production of printed circuit boards: 90023 90096 90071 90003 Silk screen printing 90004 uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits. 90072 90071 90003 Photoengraving 90004 uses a photomask and developer to selectively remove a photoresist coating.The remaining photoresist protects the copper foil. Subsequent etching removes the unwanted copper. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for 90007 phototools 90008; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements. 90072 90071 90003 PCB milling 90004 uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate.A PCB milling machine (referred to as a 'PCB Prototyper') operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis . Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format. 90072 90111 90002 "Additive" processes also exist. The most common is the "semi-additive" process. In this version, the unpatterned board has a thin layer of copper already on it.A reverse mask is then applied. (Unlike a subtractive process mask, this mask exposes those parts of the substrate that will eventually become the traces.) Additional copper is then plated onto the board in the unmasked areas; copper may be plated to any desired weight. Tin-lead or other surface platings are then applied. The mask is stripped away and a brief etching step removes the now-exposed original copper laminate from the board, isolating the individual traces. Some boards with plated through holes but still single sided were made with a process like this.General Electric made consumer radio sets in the late 1960s using boards like these. 90023 90002 The additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes (to produce conductive vias) in the circuit board. 90023 90070 90071 90002 PCB copper electroplating machine for adding copper to the in-process PCB 90023 90072 90071 90002 PCBs in process of adding copper via electroplating 90023 90072 90075 90002 The dimensions of the copper conductors of the printed circuit board is related to the amount of current the conductor must carry.Each trace consists of a flat, narrow part of the copper foil that remains after etching. Signal traces are usually narrower than power or ground traces because their current carrying requirements are usually much less. In a multi-layer board one entire layer may be mostly solid copper to act as a ground plane for shielding and power return. For printed circuit boards that contain microwave circuits, transmission lines can be laid out in the form of stripline and microstrip with carefully controlled dimensions to assure a consistent impedance.In radio-frequency circuits the inductance and capacitance of the printed circuit board conductors can be used as a delibrate part of the circuit design, obviating the need for additional discrete components. 90023 90054 Chemical etching 90055 90002 Chemical etching is done with ferric chloride, ammonium persulfate, or sometimes hydrochloric acid. For PTH (plated-through holes), additional steps of electroless deposition are done after the holes are drilled, then copper is electroplated to build up the thickness, the boards are screened, and plated with tin / lead.The tin / lead becomes the resist leaving the bare copper to be etched away. 90023 90002 The simplest method, used for small scale production and often by hobbyists, is immersion etching, in which the board is submerged in etching solution such as ferric chloride. Compared with methods used for mass production, the etching time is long. Heat and agitation can be applied to the bath to speed the etching rate. In bubble etching, air is passed through the etchant bath to agitate the solution and speed up etching.Splash etching uses a motor-driven paddle to splash boards with etchant; the process has become commercially obsolete since it is not as fast as spray etching. In spray etching, the etchant solution is distributed over the boards by nozzles, and recirculated by pumps. Adjustment of the nozzle pattern, flow rate, temperature, and etchant composition gives predictable control of etching rates and high production rates. 90029 [4] 90030 90023 90002 90137 As more copper is consumed from the boards, the etchant becomes saturated and less effective; different etchants have different capacities for copper, with some as high as 150 grams of copper per litre of solution.In commercial use, etchants can be regenerated to restore their activity, and the dissolved copper recovered and sold. Small-scale etching requires attention to disposal of used etchant, which is corrosive and toxic due to its metal content. 90023 90002 The etchant removes copper on all surfaces exposed by the resist. "Undercut" occurs when etchant attacks the thin edge of copper under the resist; this can reduce conductor widths and cause open-circuits. Careful control of etch time is required to prevent undercut.Where metallic plating is used as a resist, it can "overhang" which can cause short-circuits between adjacent traces when closely spaced. Overhang can be removed by wire-brushing the board after etching. 90029 [4] 90030 90023 90054 Lamination 90055 90002 Some PCBs have trace layers inside the PCB and are called 90007 multi-layer 90008 PCBs. These are formed by bonding together separately etched thin boards. 90023 90054 Drilling 90055 90002 Holes through a PCB are typically drilled with small-diameter drill bits made of solid coated tungsten carbide.Coated tungsten carbide is recommended since many board materials are very abrasive and drilling must be high RPM and high feed to be cost effective. Drill bits must also remain sharp to not mar or tear the traces. Drilling with high-speed-steel is simply not feasible since the drill bits will dull quickly and thus tear the copper and ruin the boards. The drilling is performed by automated drilling machines with placement controlled by a 90007 drill tape 90008 or 90007 drill file 90008. These computer-generated files are also called 90007 numerically controlled drill 90008 (NCD) files or "Excellon files".The drill file describes the location and size of each drilled hole. These holes are often filled with annular rings (hollow rivets) to create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB. 90023 90002 When very small vias are required, drilling with mechanical bits is costly because of high rates of wear and breakage. In this case, the vias may be evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole.These holes are called 90007 micro vias 90008. 90023 90002 It is also possible with 90007 controlled-depth 90008 drilling, laser drilling, or by pre-drilling the individual sheets of the PCB before lamination, to produce holes that connect only some of the copper layers, rather than passing through the entire board. These holes are called 90007 blind vias 90008 when they connect an internal copper layer to an outer layer, or 90007 buried vias 90008 when they connect two or more internal copper layers and no outer layers.90023 90002 The walls of the holes, for boards with 2 or more layers, are made conductive then plated with copper to form 90007 plated-through holes 90008 that electrically connect the conducting layers of the PCB. For multilayer boards, those with 4 layers or more, drilling typically produces a 90007 smear 90008 of the high temperature decomposition products of bonding agent in the laminate system. Before the holes can be plated through, this 90007 smear 90008 must be removed by a chemical 90007 de-smear 90008 process, or by 90007 plasma-etch 90008.Removing (etching back) the smear also reveals the interior conductors as well. 90023 90054 Exposed conductor plating and coating 90055 90002 PCBs 90029 [5] 90030 are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper. 90029 [6] 90030 90023 90002 After PCBs are etched and then rinsed with water, the soldermask is applied, and then any exposed copper is coated with solder, nickel / gold, or some other anti-corrosion coating. 90029 [7] 90030 90029 [8] 90030 90023 90002 Matte solder is usually fused to provide a better bonding surface or stripped to bare copper.Treatments, such as benzimidazolethiol, prevent surface oxidation of bare copper. The places to which components will be mounted are typically plated, because untreated bare copper oxidizes quickly, and therefore is not readily solderable. Traditionally, any exposed copper was coated with solder by hot air solder levelling (HASL). The HASL finish prevents oxidation from the underlying copper, thereby guaranteeing a solderable surface. 90029 [9] 90030 This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU and US, which restricts the use of lead.One of these lead-free compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel, and a nominal of 60ppm germanium. 90023 90002 It is important to use solder compatible with both the PCB and the parts used. An example is Ball Grid Array (BGA) using tin-lead solder balls for connections losing their balls on bare copper traces or using lead-free solder paste. 90023 90002 Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), and direct gold plating (over nickel).Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu 90204 5 90205 Sn 90204 6 90205 and Ag 90204 3 90205 Cu that dissolve into the Tin liquidus or solidus (@ 50C), stripping surface coating and / or leaving voids. 90023 90002 90007 Electrochemical migration 90008 (ECM) is the growth of conductive metal filaments on or in a printed circuit board (PCB) under the influence of a DC voltage bias.90029 [10] 90030 90029 [11] 90030 Silver, zinc, and aluminum are known to grow whiskers under the influence of an electric field. Silver also grows conducting surface paths in the presence of halide and other ions, making it a poor choice for electronics use. Tin will grow "whiskers" due to tension in the plated surface. Tin-Lead or Solder plating also grows whiskers, only reduced by the percentage Tin replaced. Reflow to melt solder or tin plate to relieve surface stress lowers whisker incidence.Another coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature. 90029 [12] 90030 90023 90054 Solder resist 90055 90002 Areas that should not be soldered may be covered with a polymer 90007 solder resist 90008 (90007 solder mask 90008) coating. The solder resist prevents solder from bridging between conductors and creating short circuits. Solder resist also provides some protection from the environment. Solder resist is typically 20-30 micrometres thick.90023 90054 Screen printing 90055 90002 Line art and text may be printed onto the outer surfaces of a PCB by screen printing. When space permits, the screen print text can indicate component designators, switch setting requirements, test points, and other features helpful in assembling, testing, and servicing the circuit board. 90023 90002 Screen print is also known as the 90007 silk screen 90008, or, in one sided PCBs, the 90007 red print 90008. 90023 90002 Lately some digital printing solutions have been developed to substitute the traditional screen printing process.This technology allows printing variable data onto the PCB, including serialization and barcode information for traceability purposes. 90023 90054 Test 90055 90002 Unpopulated boards may be subjected to a 90007 bare-board test 90008 where each circuit connection (as defined in a 90007 netlist 90008) is verified as correct on the finished board. For high-volume production, a Bed of nails tester, a fixture or a Rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing.A computer will 90007 instruct 90008 the electrical test unit to apply a small voltage to each contact point on the bed-of-nails as required, and verify that such voltage appears at other appropriate contact points. A "short" on a board would be a connection where there should not be one; an "open" is between two points that should be connected but are not. For small- or medium-volume boards, 90007 flying probe 90008 and 90007 flying-grid 90008 testers use moving test heads to make contact with the copper / silver / gold / solder lands or holes to verify the electrical connectivity of the board under test.Another method for testing is industrial CT scanning, which can generate a 3D rendering of the board along with 2D image slices and can show details such a soldered paths and connections. 90023 90054 Printed circuit assembly 90055 PCB with test connection pads 90002 After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional 90007 printed circuit assembly 90008, 90029 [13] 90030 90029 [14] 90030 or PCA (sometimes called a "printed circuit board assembly" PCBA ).In 90007 through-hole 90008 construction, component leads are inserted in holes. In 90007 surface-mount 90008 construction, the components are placed on 90007 pads 90008 or 90007 lands 90008 on the outer surfaces of the PCB. In both kinds of construction, component leads are electrically and mechanically fixed to the board with a molten metal solder. 90023 90002 There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with machine placement and bulk wave soldering or reflow ovens, but skilled technicians are able to solder very tiny parts (for instance 0201 packages which are 0.02 in. by 0.01 in.) 90029 [15] 90030 by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts may be extremely difficult to solder by hand, such as BGA packages. 90023 90002 Often, through-hole and surface-mount construction must be combined in a single assembly because some required components are available only in surface-mount packages, while others are available only in through-hole packages. Another reason to use both methods is that through-hole mounting can provide needed strength for components likely to endure physical stress, while components that are expected to go untouched will take up less space using surface-mount techniques.90023 90002 After the board has been populated it may be tested in a variety of ways: 90023 90070 90071 While the power is on, in-circuit test, where physical measurements (i.e. voltage, frequency) can be done. 90072 90075 90070 90071 While the power is on, functional test, just checking if the PCB does what it had been designed for. 90072 90075 90002 To facilitate these tests, PCBs may be designed with extra pads to make temporary connections. Sometimes these pads must be isolated with resistors.The in-circuit test may also exercise boundary scan test features of some components. In-circuit test systems may also be used to program nonvolatile memory components on the board. 90023 90002 In boundary scan testing, test circuits integrated into various ICs on the board form temporary connections between the PCB traces to test that the ICs are mounted correctly. Boundary scan testing requires that all the ICs to be tested use a standard test configuration procedure, the most common one being the Joint Test Action Group (JTAG) standard.The JTAG test architecture provides a means to test interconnects between integrated circuits on a board without using physical test probes. JTAG tool vendors provide various types of stimulus and sophisticated algorithms, not only to detect the failing nets, but also to isolate the faults to specific nets, devices, and pins. 90029 [16] 90030 90023 90002 When boards fail the test, technicians may desolder and replace failed components, a task known as 90007 rework 90008. 90023 90054 Protection and packaging 90055 90002 PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered.The coat prevents corrosion and leakage currents or shorting due to condensation. The earliest conformal coats were wax; modern conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Another technique for applying a conformal coating is for plastic to be sputtered onto the PCB in a vacuum chamber. The chief disadvantage of conformal coatings is that servicing of the board is rendered extremely difficult. 90029 [17] 90030 90023 90002 Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport.When handling these boards, the user must be grounded (earthed). Improper handling techniques might transmit an accumulated static charge through the board, damaging or destroying components. Even bare boards are sometimes static sensitive. Traces have become so fine that it's quite possible to blow an etch off the board (or change its characteristics) with a static charge. This is especially true on non-traditional PCBs such as MCMs and microwave PCBs. 90023 90026 Design 90027 90070 90071 Schematic capture or schematic entry is done through an EDA tool.90072 90071 Card dimensions and template are decided based on required circuitry and case of the PCB. Determine the fixed components and heat sinks if required. 90072 90071 Deciding stack layers of the PCB. 4 to 12 layers or more depending on design complexity. Ground plane and Power plane are decided. Signal planes where signals are routed are in top layer as well as internal layers. 90029 [18] 90030 90072 90071 Line impedance determination using dielectric layer thickness, routing copper thickness and trace-width.Trace separation also taken into account in case of differential signals. Microstrip, stripline or dual stripline can be used to route signals. 90072 90071 Placement of the components. Thermal considerations and geometry are taken into account. Vias and lands are marked. 90072 90071 Routing the signal trace. For optimal EMI performance high frequency signals are routed in internal layers between power or ground planes as power plane behaves as ground for AC. 90072 90071 Gerber file generation for manufacturing.90072 90075 90026 Safety certification (US) 90027 90002 Safety Standard UL 796 covers component safety requirements for printed wiring boards for use as components in devices or appliances. Testing analyzes characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts. 90023 90026 "Cordwood" construction 90027 A cordwood module. 90002 Cordwood construction can save significant space and was often used with wire-ended components in applications where space was at a premium (such as missile guidance and telemetry systems) and in high-speed computers, where short traces were important.In "cordwood" construction, axial-leaded components were mounted between two parallel planes. The components were either soldered together with jumper wire, or they were connected to other components by thin nickel ribbon welded at right angles onto the component leads. To avoid shorting together different interconnection layers, thin insulating cards were placed between them. Perforations or holes in the cards allowed component leads to project through to the next interconnection layer. One disadvantage of this system was that special nickel leaded components had to be used to allow the interconnecting welds to be made.Some versions of cordwood construction used single sided PCBs as the interconnection method (as pictured). This meant that normal leaded components could be used. Another disadvantage of this system is that components located in the interior are difficult to replace. 90023 90002 Before the advent of integrated circuits, this method allowed the highest possible component packing density; because of this, it was used by a number of computer vendors including Control Data Corporation. The cordwood method of construction now appears to have fallen into disuse, probably because high packing densities can be more easily achieved using surface mount techniques and integrated circuits.90023 90026 Multiwire boards 90027 90002 Multiwire is a patented technique of interconnection which uses machine-routed insulated wires embedded in a non-conducting matrix (often plastic resin). It was used during the 1980s and 1990s. (Kollmorgen Technologies Corp, U.S. Patent 4,175,816 filed 1978) Multiwire is still available in 2010 through Hitachi. There are other competitive discrete wiring technologies that have been developed (Jumatech [2], layered sheets). 90023 90002 Since it was quite easy to stack interconnections (wires) inside the embedding matrix, the approach allowed designers to forget completely about the routing of wires (usually a time-consuming operation of PCB design): Anywhere the designer needs a connection, the machine will draw a wire in straight line from one location / pin to another.This led to very short design times (no complex algorithms to use even for high density designs) as well as reduced crosstalk (which is worse when wires run parallel to each other-which almost never happens in Multiwire), though the cost is too high to compete with cheaper PCB technologies when large quantities are needed. 90023 90026 Surface-mount technology 90027 Main article: Surface-mount technology Surface mount components, including resistors, transistors and an integrated circuit 90002 Surface-mount technology emerged in the 1960s, gained momentum in the early 1980s and became widely used by the mid 1990s.Components were mechanically redesigned to have small metal tabs or end caps that could be soldered directly on to the PCB surface. Components became much smaller and component placement on both sides of the board became more common than with through-hole mounting, allowing much higher circuit densities. Surface mounting lends itself well to a high degree of automation, reducing labour costs and greatly increasing production and quality rates. Carrier Tapes provide a stable and protective environment for Surface mount devices (SMDs) which can be one-quarter to one-tenth of the size and weight, and passive components can be one-half to one-quarter of the cost of corresponding through- hole parts.However, integrated circuits are often priced the same regardless of the package type, because the chip itself is the most expensive part. As of 2006, some wire-ended components, such as small-signal switch diodes, e.g. 1N4148, are actually significantly cheaper than corresponding SMD versions. 90023 90026 See also 90027 Schematic Capture. (KiCAD) PCB layout. (KiCAD) 3D View. (KiCAD) 90349 90350 PCB Materials 90351 90352 90349 90350 PCB layout software 90351 90352 90026 References 90027 90096 90071 90003 ^ 90004 US 1256599 90072 90071 ^ 90029 90007 90003 a 90004 90008 90030 90029 90007 90003 b 90004 90008 90030 Charles A.90004 See appendix D of IPC-2251 90072 90111 90026 External links 90027 90002 90003 Design guidelines 90004 90023 90002 90003 Standards and specifications 90004 90023 .90000 Printed circuit board - Simple English Wikipedia, the free encyclopedia 90001 90002 90003 A 90004 printed circuit board 90005 (90004 PCB 90005) is a board made for connecting electronic components together. These are used in almost all computers and electronics today. 90008 90003 The "card" is made of a material that does not conduct electricity, usually fiberglass. Usually copper is etched (set in thin lines) inside the board between the layers of fiberglass, or on the surface of the board.90010 [1] 90011 This makes the electricity go only where it is wanted. 90008 90003 Electronic components are then attached to this board using a metal to conduct electricity. The metal etched into the board allows electricity to travel from one component to another in electrical circuits. 90008 90003 Boards can have many different parts which are connected and work together. The most common circuit boards are made in large numbers for a specific job, for example to run a computer, a mobile / cell phone or a television.Some circuit boards are made plain so a person can build their own for a new electrical task. Most things that use electricity have at least one circuit board inside of them that makes them run. 90008 90003 Flexible circuit boards are those that are made thin enough and of the right material to flex (bend). 90008 90019 A hand made circuit board 90003 Printed circuit boards came from electrical connection systems that were used in the 1850s. Originally metal strips or rods were used to connect large electric components mounted on wooden bases.Later, the metal strips were replaced by wires connected to screw terminals, and wooden bases were replaced by metal frames. This let things be smaller, which was needed as circuits became more complex with more parts. Thomas Edison tested methods of using metals on linen paper. Arthur Berry in 1913 patented a print-and-etch method in Britain. In 1925 Charles Ducas of the United States developed a method using electroplating. He created an electrical path directly on an insulated surface by printing through a stencil (a shape cut into a board or paper) with special ink that could conduct electricity, just like wires could.This method was called "printed wiring" or "printed circuit." 90008 90003 In 1943 року, the Austrian Paul Eisler, working in the United Kingdom, patented a method of etching the conductive pattern, or circuits, on a layer of copper foil attached to a hard base that did not conduct electricity. Eisler's technique was noticed by the US military and they started to use it in new weapons including proximity fuzes in World War II. His idea became very useful in the 1950s when the transistor was introduced.Up to that point, vacuum tubes and other components were so large that the traditional mounting and wiring methods were all that was needed. With the introduction of transistors, however, the components became very small, and manufacturers needed to use printed circuit boards so the connections could also be small. 90008 90003 Plated through-hole technology and its use in multi-layer PCBs were patented by the U.S. firm Hazeltine in 1961. This allowed much more complex boards, with components placed closely together.Integrated circuit chips were introduced in the 1970s, and these components were quickly incorporated into printed circuit board design and manufacturing techniques. Today the Printed Circuit Board can have up to 50 layers in some applications. 90008 90003 Surface-mount technology was developed in the 1960s and became widely used in the late 1980s. 90008 90003 The main task in designing a PCB is figuring out where all the components are going to go. Normally there is a design or schematic that will be turned into a PCB.There is no such thing as a standard printed circuit board. Each board is designed for its own use and must be the right size to fit the required space. Board designers use computer-aided design software to layout the circuit designs on the board. The spaces between electrical paths can be 0.04 inches (1.0 mm) or smaller. The location of the holes for component leads or contact points are also laid out. Once the circuit pattern is laid out, a negative image is printed out at exact size on a clear plastic sheet.With a negative image, the areas that are not part of the circuit pattern are shown in black and the circuit pattern is shown as clear. The metal is then removed from the clear areas, usually with chemicals. This design is made into instructions for a computer-controlled drilling machine or for the automatic solder paste used in the manufacturing process. 90010 [2] 90011 90008 90003 The card is made with outer layers of copper. Unwanted copper is removed, leaving copper wires that will connect the electronic components.The components are placed on the board, making contact with the wires. 90008 90034 Photoresist [change | change source] 90035 90003 Circuit boards are sometimes made with photolithography. A covering called photoresist reacts with light, and then the circuit board and covering are put in a developer. This method is expensive per board, but very cheap to set up in the beginning. 90010 [3] 90011 90008 90034 Silkscreen [change | change source] 90035 90003 There are, however, different methods of making a circuit board.Some professionally made circuit boards use a different method to remove extra copper from the circuit board. A process called silk screen printing is used. Silk-screening is when a cloth is pulled tight over a frame. Then an image is printed onto the cloth. Then ink is pressed through the cloth. The ink does not go where the image has been printed on the cloth. It is called silk-screening because the cloth is usually silk. The cloth is usually silk because it has very small holes. silk-screening is used to print an ink called resist onto the board.Resist is an ink that resists the etchant used to make the circuit board. Etchant dissolves the copper on the board. This is cheaper for each board than photo-resist, but is more expensive in the beginning. 90008 90034 Milling [change | change source] 90035 90003 Another way to make a circuit board is to use a mill. A mill is a drill that moves in many directions. The drill removes a small amount of copper each time it moves across the board. The mill removes the copper around the wires on the board.This leaves extra copper on the board. Other methods do not leave the extra copper on the board. This method is cheaper per board, but the equipment to make it is expensive. This method is not used often, because the other two methods are easier. 90008 90048 90049 ↑ Rozenblat, L. (2008). 90050 PCB Printed Circuit Board Design - Guidelines, Layout Tutorials, Software 90051. Retrieved April 26, 2009 from [1] 90052 90049 ↑ Ford, D. N. (n.d.). 90050 How printed circuit board is made - Background, History, Design, Raw materials, The manufacturing process of printed circuit board, Quality control 90051.(C. Cavette, Editor) Retrieved April 26, 2009 from [2] 90052 90049 ↑ 90058 "Home DIY Stuff". Retrieved 12 May 2015. 90059 90052 90061 90062 90063 90064 90065 90066 90067 90065 Wikimedia Commons has media related to 90050 90004 PCB 90005 90051. 90067 90074 90075 90076 .90000 PCB Basics for Electronics Beginners | EAGLE 90001 90002 If you have even a little bit of interest in learning about electronics, then you absolutely 90003 need 90004 to know about the printed circuit board or the PCB. Why? These boards are in every piece of electronics known to man, no exceptions! Open your computer, smartphone, or even a fork, and you'll find a PCB. 90005 90006 90002 90008 The mighty PCB in items as common as a fork! 90009 90005 90002 To the electronics beginner, these green shapes can seem a bit mysterious at first.There's a ton of different looking parts, and plenty to learn to know how it all works together. But with a high-altitude perspective, understanding what a PCB is and how it works can be easy. Look at a PCB from 10,000 feet, and you'll find that it looks just like a city! 90005 90013 I Can See Clearly Now 90014 90002 You've likely flown in an airplane at least once in your life. My favorite part of the journey is when the plane takes off from the runway. As you climb higher and higher, you get a new perspective on a city that you only see from the great heights.And the higher you go, the more you start to see just how your city is organized and meticulously planned. There's roads, buildings, cars, and people all connected in a complete system. 90005 90017 90002 90008 Los Angeles at night with its grid-like layout. Keep this in mind as you learn about all of the parts of a PCB! (Image source) 90009 90005 90002 Just like our cities, circuit boards provide a complete system, a foundation, for all of the electronic components that make our objects come to life.In fact, you can compare many aspects of a city to a PCB, like: 90005 90024 90025 Roads & Cars 90026 90027 90002 On a PCB you'll notice a bunch of lines running all over the place, connecting to various components. These are just like the roads in our cities, except instead of cars zipping around, electrons are flying 90029 down roads made out of copper, hurrying off to power one component after another! These copper roads are called 90025 traces 90026 in our PCB city. 90005 90033 90002 90008 A PCB without any of its components, you can see the traces going all over the place.(Image source) 90009 90005 90024 90025 Downtown 90026 90027 90002 Downtown is where all of the work in a city happens. You've got your big corporate offices, local business on every corner, and maybe even some open markets. This central hub of human activity is just like those square black shapes that you'll find on a PCB called 90025 Integrated Circuits (ICs) 90026. These ICs are where all of the tough work happens in a PCB, doing rapid-fire calculations. 90005 90046 90002 90008 Pull out a PCB, and you're bound to find an integrated circuit at the heart of it.Just look for the black square or rectangular boxes! (Image source) 90009 90005 90002 90025 Suburbs 90026 90005 90002 In the suburbs are where homes, parks, and schools are a common sight. From a plane, you'll notice that the rows of houses in a suburb often look just like the small 90025 resistors 90026 found all over a PCB. These resistors are out there resisting the flow of electricity according to their value. 90005 90059 90002 90008 Resistors are super tiny on today's modern electronics.Here are two close up. (Image source) 90009 90005 90024 90025 Construction 90026 90027 90002 No city is free from construction! Whether it's building a new skyscraper or a new apartment complex, you'll find new foundations being laid everywhere. These foundations are just like the empty 90025 pads 90026 that you'll find on a PCB with no components on it. While they might be empty now, a component will soon be soldered to them. 90005 90072 90002 90008 See all of those empty metal shapes; those are connection points for components.(Image source) 90009 90005 90024 90025 Addresses & Street Names 90026 90027 90002 You will not find your way around a city without some address or street name. And just like how these two help you to navigate mazes of streets, all of the white writing that you find on a PCB does just the same. This lettering, called 90025 silkscreen 90026, helps people that are assembling or fixing PCBs to know exactly what a part is and its location. 90005 90085 90002 90008 Silkscreen up close, you can see some that identify capacitors by C2, C3, and C4, and a diode by D1.(Image source) 90009 90005 90024 90025 Sewer System 90026 90027 90002 All of that water that we use when doing the dishes or washing our car has to go somewhere, and into the sewers it finds itself traveling to new destinations. The sewer system is just like the holes you might find on a PCB called 90025 vias. 90026 These manhole-like shapes help to deliver electricity from one side of a PCB to another, just like how water travels from your sink to the local sewage plant, it's an expressway! 90005 90098 90002 90008 Vias are the tiny holes you'll see on some PCBs, allowing electricity to other layers.(Image source) 90009 90005 90024 90025 Power Plant 90026 90027 90002 Power plants keep our lights running. Could you imagine what a city would be like without any? Hopefully, not zombie infested! Just like power plants in a city, we have what are called 90025 capacitors 90026 on a PCB that store electricity. They can hold a charge, and release it when needed to send power where it needs to go. 90005 90111 90002 90008 A ton of capacitors all lined up. Notice the unique cylindrical shape.Most capacitors will look like this. 90009 90005 90024 90025 Street Lights & Signs 90026 90027 90002 Street lights and signs help to keep order in a world full of crazy drivers, controlling the flow of traffic in our maze of streets and highways. On a PCB, streetlights, and signs are just like 90025 diodes 90026 and their cousin the 90025 LED 90026. The diode controls the flow of electricity on a PCB, allowing it to go only in one direction. And you're bound to have seen a LED, it's just like a diode, except that it lights up when electricity runs through it.90005 90126 90002 90008 Two diodes on a PCB, controlling the flow of electricity. (Image source) 90009 90005 90002 Now that you have all the individual parts put together in your mind check out the picture below to see if you can point out some of the landmarks on this here PCB. Integrated circuits are the easiest to find, just look for the black boxes. But you might need to squint to see all of the tiny resistor suburbs grouped all over the place. Of course, the parts and pieces we listed above are only a fraction of the things you'll find on a PCB, but you've got enough knowledge now to yank the PCB out of any piece of electronics and start naming things! 90005 90133 90002 90008 Can you spot some of the parts we talked about on this completed PCB? They're everywhere! 90009 90005 90013 How would I make a PCB? 90014 90002 You can think of a PCB as a kind of delicious, multi-layered vanilla and strawberry cake when looked at from the side.It has several repeating layers of copper, solder mask, silkscreen, and fiberglass. Let's start from the inside out to understand these layers. 90005 90142 90002 90008 A cross section of a double-sided PCB with silkscreen, solder mask, copper, and FR4. (Image source) 90009 90005 90002 90025 Fiberglass. 90026 This material rests at the center of a PCB and is commonly referred to as a substrate, or FR4. The fiberglass is the strongest layer of them all and is responsible for giving a PCB it's rigid and thick structure.When making a PCB, the entire process starts with the fiberglass, and all the other layers are added on top. 90005 90002 90025 Copper. 90026 Without a layer of copper, a PCB would never be able to conduct electricity. You'll usually find copper on both the top and bottom of a PCB, and it contains all of the traces that will connect your components. 90005 90002 90025 Soldermask. 90026 This stuff is what gives a PCB its traditional green color and is applied over the copper layers. You might also find PCBs in red or blue; it's the designer's choice! Solder Mask holds an outstanding job of keeping all of the copper traces insulated from each other so no accidents can occur like short circuits.90005 90002 90025 Silkscreen. 90026 You'll find this white text all over the place on a PCB, identifying the names of resistors, capacitors, LEDs, etc ... Silkscreen comes in handy when you're making a PCB, as it can tell another human or computer where a particular part needs to go. 90005 90002 The actual process of how a PCB is made can be complicated, and involves the use of a manufacturer, also called a fab house by some. These fab houses will take all of the completed design files that an engineer hands off to create a PCB in its physical form.While the entire process is deserving of its own blog post, we'll keep things simple with a brief outline of how a PCB comes to be: 90005 90165 90166 90025 Step 1 - Creating a fiberglass foundation. A manufacturer will first make the inner fiberglass layer (core) that all of the other layers of copper, solder mask, etc .. will be applied to. 90026 90169 90166 90171 Step 2 - Adding copper layers 90172. With the fiberglass foundation in place, a manufacturer will then add copper foil on both sides of the fiberglass.90169 90166 90171 Step 3 - Adding copper patterns. 90172 Next, a laminated sheet of the PCB design is laid on top of the copper, which shows where all of the copper traces need to be. 90169 90166 90171 Step 4 - Defining copper patterns. 90172 The laminated sheet and copper are then exposed under a UV lamp and covered with a photoresist film, which etches the traces into the copper foil. 90169 90166 90171 Step 5 - Bathing the board. 90172 Now that the copper traces are in place, a PCB will then be given a chemical bath that removes all of the unwanted copper, leaving only the copper traces that an engineer designed.90169 90166 90171 Step 6 - Protecting with 90172 solder mask 90171. 90172 A protective layer of solder mask is applied, giving a PCB its traditional green color while protecting it from short circuits. 90169 90166 90171 Step 7 - Adding silkscreen. 90172 To finish up, white silkscreen is added which will help to know exactly where components need to go on a PCB. At this stage, the PCB is considered complete as a "bare board," meaning it has no parts attached yet. 90169 90166 90171 Step 8 - Adding components.90172 The bare board is then taken through an assembly process where various components like resistors, integrated circuits, capacitors, etc. are attached. Once complete, this is the PCB in its final form that you'll see in all of your electronics at home. 90169 90200 90002 The assembly process has quite a few details that we left out and is a world in itself. If you're interested in learning more about the manufacturing process, be sure to check out the video below to see it in action at Eurocircuits! 90005 90002 90204 90205 90005 90013 Were PCBs Always This Complex? 90014 90002 The green PCBs that we have come to know in all of our electronics have not always been so.Why, just over 60 years ago, you were bound to see PCBs made from materials like masonite, cardboard, and even wooden planks. In these old-school PCBs, flat brass wires were bolted onto the board, and a collection of components were scattered all over the place. Here's an old TV with one of the earliest PCBs inside, look at that mess! 90005 90211 90002 90008 Look at that mess! Here's an old-school PCB in a TV before modern copper boards were invented. (Image source) 90009 90005 90002 This monstrosity of a PCB soon changed, though, and in тисячі дев'ятсот сорок три Austrian scientists Dr.Paul Eisler created the first modern PCB for a radio. Soon after, copper replaced brass the metal of choice for PCBs, as it allowed electricity to flow more efficiently and it was also a lot cheaper to manufacture. 90005 90002 The PCB finally got its moment of fame in 1956, when the US Patent Office issued a patent for the "Processing of Assembling Electrical Circuits" to a group of scientists in the US Army. It's the military that is to be thanked for many of the advancements we've seen in PCBs.Thanks to their need for new weapons and communications systems, we've taken the hulking mass of PCBs of yesterday and shrunken it down into something that can fit into our pockets! 90005 90013 Today's Wild and Crazy Uses for PCBs 90014 90002 Today, PCBs are all over the place, powering some of the wild and crazy gadgets and services that we could have ever imagined existing. Have you heard of these? 90005 90024 90025 Delivery Drones 90026 90027 90002 Amazon recently unveiled their new delivery service, Prime Air, made possible by drones! We're talking about being able to order something off Amazon and have it delivered to your home in mere minutes, not days, all thanks to the power of PCBs.90005 90002 The PCBs in these drones deliver all of the complexity needed to get the job done, including GPS and Bluetooth that allow a package to be delivered with precision, and gyroscopes and accelerometers that keep them flying straight. Check out the video below to see Amazon Prime Now in action. 90005 90002 90233 90205 90005 90024 90025 Prosthetic Limbs 90026 90027 90002 Gone are the days of plain mechanical limbs that did not provide any feedback. Today's prosthetic limbs are packed with microprocessors that are adding a whole new level of natural experience.In prosthetic legs, knee angle sensors can provide information to a microprocessor about pressure adjustments in the heel or front part of the foot. This all leads to a much more natural walking experience thanks to PCBs and their microprocessor counterparts. 90005 90024 90025 Hearing Implants 90026 90027 90002 Cochlear Implants allows the deaf or hearing impaired to hear again all thanks to the power of PCBs and electronics. These implants are placed surgically under the skin and contain a ton of electronics, including: 90005 90248 90166 A microphone that picks up all the variety of sounds from an environment.90169 90166 A speech processor that can make sense of all the sounds collected by the microphone. 90169 90166 A transmitter, receiver, and stimulator that receives signals from the speech processor and converts them into electrical impulses. 90169 90166 An electrode array which collects all of the electrical impulses from the stimulator and sends them to regions of the auditory nerve to be heard! 90169 90257 90002 These are just a few of the extraordinary uses that PCBs and electronics as a whole have made possible for the human race.There's a ton more out there, like the computer or smartphone that you're reading this blog post on. Without a PCB, you would never be here! Or how about the craziness of the SpaceX self-landing rocket? Hats off to you again, PCB. 90005 90013 To Infinity, and Beyond 90014 90002 The PCB is the foundation to our future, allowing us to create, discover and improve the human experience in ways we might have never thought possible. But today, we're just at the beginning of our journey with PCBs. In the future, we might find ourselves using biodegradable circuit boards to help eliminate electronic waste.Or perhaps you'll be able to 3D print your own PCB from the comfort of your home! 90005 90002 There are so many uses to electronics and PCBs, and it all starts with you! Your bright engineering mind probably has some ideas up there it needs to get out. Why not use a tool to bring those ideas to life that millions of other engineers trust every day? Try Autodesk EAGLE for free today! 90005 .90000 What is a Printed Circuit Board? Make Circuits by Connecting Components 90001 90002 A printed circuit board (PCB) is an electrical circuit whose components and conductors are contained within a mechanical structure. 90003 90002 ALTIUM DESIGNER 90003 90002 The most powerful, modern and easy-to-use PCB design tool for professional use. 90003 90002 90009 90003 90002 A printed circuit board integrates components and conductors 90003 90013 A printed circuit board is an electrical circuit whose components and conductors are contained within a mechanical structure.Conductive features include copper traces, pads, heat sinks, or conductive planes. The mechanical structure is made with insulating material laminated between layers of conductive material. The overall structure is plated and covered with nonconductive solder mask and silk screen to legend electronic component location. 90014 90002 The printed circuit board is built by alternating layers of conductive copper with layers of nonconductive insulation material. During manufacture the inner copper layers are etched leaving intended traces of copper to connect circuit components.Once etched insulation material is laminated to the copper layers and so on until the printed circuit board is complete. 90003 90002 Electronic components are added to the outer layers of the printed circuit board when all the layers have been etched and laminated together. Surface mount parts are automatically applied with robots and through-hole parts are manually placed. All the pieces are then soldered onto the board using techniques such as reflow or wave soldering. The final assembly is plated after which solder mask and silk screen legending is applied.90003 90002 Before we can get into answering what is a printed circuit board, it is best to understand where PCBs have come from. It's been a tremendous journey moving toward HDI designs with hundreds of holes and PCBs whose electrical connections are powering everything from smartphones to heart rate monitors to rockets. The process from wiring board to flexible PCBs and wherever else technology takes us in the future has been fun. 90003 90002 Before printed circuit boards, electrical circuits were built by attaching individual wires to components.Conductive paths were accomplished by soldering metal components together with wire. Larger circuits with many electronic components contained many wires. The number of wires were so great that they could get tangled or inhabit a large space within a design. Debugging was difficult and reliability suffered. Manufacturing was slow necessitating manual soldering of multiple components to their wired connections. 90003 90002 90024 90003 90002 Net rules for layout are established while drawing the schematic 90003 90028 Connect Electronic Components With Nets on Printed Circuit Boards 90029 90002 Remove the need for wires by routing nets with copper on multiayer boards.Working from the schematic place components and connect pins along the circuit board layers with thoughtful net placement. Start with auto-route and use manual routing for important nets. Altium Designer offers autoroute to help with multiple net routing. 90003 90002 Once you've considered net count within your schematic and determined routing needs for your layout consider design rules and constraints. 90003 90002 Today printed circuit board software provides schematic capture to define circuits and their components for design into printed circuit boards.PCB designers work from the schematic to organize components onto a virtual board whose outline dimensions have been specified by the mechanical engineer on the design team. Components are placed and routing occurs following design rules to mitigate noise through carefully planned grounding planes and impedance planning. 90003 90002 Electronic products these days have numerous demands from flexible PCBs to surface-mount technology and components for tricky Printed Circuit assembly. A Printed Circuit Board manufacturing process will be improved significantly with software that can accurately keep track of holes, traces and materials in an organized and secure fashion.Further, drafting electronic devices will be made easier with schematic capture that can easily translate data files throughout the design process. 90003 90002 90039 90003 90002 Routing differential pairs parameters are set in Properties Panel 90003 90028 Use Unified EDA Software Environment to Map Circuits to Layouts 90029 90002 PCB designers consult with circuit designers to determine best practice for component placement, multilayer stack, net specifications, and base material selection.Procurement and supply chain enter the picture for material sourcing. Component libraries within the tool incorporate sourcing and pricing information along with electrical parameters. Fabrication vendors are engaged so material definitions for the layer stack coincide with practical Printed Circuit Board manufacturing processes. 90003 90002 Knowing your footprints and dimensioning limitations use Altium's unified environment to incorporate into the layout. 90003 90002 PCBs will only get more technologically intensive as the years press forward.Thankfully, design software is continually improving to make designing them easier. The least of your worries when designing your PCB should be in how to accurately convey to manufacturers the holes on your board, where to lay the copper foil, or how to apply the solder paste. The more layers your board has, the more you need the gold standard in CAD software for your copper standards. 90003 90002 Altium Designer has all the tools you need within a unified platform to design and build your printed circuit board.From schematic capture through release to production, mechanical dimensioning and outline drawing to board layout and component footprints, Altium has you covered. Rules may be set during schematic layout to define high-speed traces for impedance control. Components may be selected from a shared library so physical as well as electrical considerations can be incorporated into selection for downstream success. 90003 90002 90054 90003 90002 Define differential pairs in schematic capture with instructional directives 90003 90028 Altium Realizes Circuit Design With Unified Printed Circuit Board Tools 90029 90002 You no longer need to worry that the circuit details you captured in your schematic will port to the layout.A PCB and all its associated substrate, copper, holes, layers, and traces will be a process to manufacture. But it does not need to be a worrisome process when you have accurate and easy-to-read software outputs. 90003 90002 Altium's unified environment incorporates the PCB layout tool so designers can follow the nets you laid down in the schematic. Use Directives within Schematic capture to communicate design constraints to your layout designer. Board outlines designed with your mechanical team easily import into Altium's PCB layout tool.Component libraries are linked and consistent across the unified design environment. Impedance calculators follow specifications defined in the schematic. 90003 90002 Altium Designer's unified environment provides all of the tools you need into one place. Beginning with the schematic in the project directory your circuits are captured and your nets are defined. Rules and constraints may be set here that will port to the PCB layout environment keeping your layout designer informed. Mechanical drawings easily import into the unified environment so board outlines begin from their origin.Component libraries are shared rather than being ad hoc amongst differing EDA tools for the same board. With component libraries linked across the enterprise, your circuit designers can select readily-accessible parts early in the design cycle keeping the printed circuit board layout relevant by the time it is released to manufacture. Routing nets is sophisticated with unified tools for impedance calculations. Planes are set early in the layer stack manager so high-speed signals can be routed on stripline adjacent to the ground plane.90003 90002 Do not drop your PCBs back down to printed wiring board days. Let strong PCB design software handle the tough work of your PCB for you. Altium Designer is the best tool on the market to design and produce your printed circuit board for today's electronic market. 90003 90068.

Отправить ответ

avatar
  Подписаться  
Уведомление о